pyFTS/docs/build/html/pyFTS.models.nonstationary.html
2022-04-10 14:32:24 -03:00

1723 lines
193 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>pyFTS.models.nonstationary package &#8212; pyFTS 1.7 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/bizstyle.css" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/bizstyle.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="pyFTS.models.seasonal package" href="pyFTS.models.seasonal.html" />
<link rel="prev" title="pyFTS.models.multivariate package" href="pyFTS.models.multivariate.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="pyFTS.models.seasonal.html" title="pyFTS.models.seasonal package"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="pyFTS.models.multivariate.html" title="pyFTS.models.multivariate package"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="pyFTS.html" >pyFTS package</a> &#187;</li>
<li class="nav-item nav-item-3"><a href="pyFTS.models.html" accesskey="U">pyFTS.models package</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">pyFTS.models.nonstationary package</a></li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="pyfts-models-nonstationary-package">
<h1>pyFTS.models.nonstationary package<a class="headerlink" href="#pyfts-models-nonstationary-package" title="Permalink to this headline"></a></h1>
<div class="section" id="submodules">
<h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this headline"></a></h2>
</div>
<div class="section" id="module-pyFTS.models.nonstationary.common">
<span id="pyfts-models-nonstationary-common-module"></span><h2>pyFTS.models.nonstationary.common module<a class="headerlink" href="#module-pyFTS.models.nonstationary.common" title="Permalink to this headline"></a></h2>
<p>Non Stationary Fuzzy Sets</p>
<p>GARIBALDI, Jonathan M.; JAROSZEWSKI, Marcin; MUSIKASUWAN, Salang. Nonstationary fuzzy sets.
IEEE Transactions on Fuzzy Systems, v. 16, n. 4, p. 1072-1086, 2008.</p>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.common.</span></span><span class="sig-name descname"><span class="pre">FuzzySet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">name</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mf</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">parameters</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/common.html#FuzzySet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.common.html#pyFTS.common.FuzzySet.FuzzySet" title="pyFTS.common.FuzzySet.FuzzySet"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.FuzzySet.FuzzySet</span></code></a></p>
<p>Non Stationary Fuzzy Sets</p>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet.alpha">
<span class="sig-name descname"><span class="pre">alpha</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet.alpha" title="Permalink to this definition"></a></dt>
<dd><p>The alpha cut value</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet.centroid">
<span class="sig-name descname"><span class="pre">centroid</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet.centroid" title="Permalink to this definition"></a></dt>
<dd><p>The fuzzy set center of mass (or midpoint)</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet.get_lower">
<span class="sig-name descname"><span class="pre">get_lower</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">t</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/common.html#FuzzySet.get_lower"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet.get_lower" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet.get_midpoint">
<span class="sig-name descname"><span class="pre">get_midpoint</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">t</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/common.html#FuzzySet.get_midpoint"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet.get_midpoint" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet.get_upper">
<span class="sig-name descname"><span class="pre">get_upper</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">t</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/common.html#FuzzySet.get_upper"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet.get_upper" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet.location">
<span class="sig-name descname"><span class="pre">location</span></span><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet.location" title="Permalink to this definition"></a></dt>
<dd><p>Pertubation function that affects the location of the membership function</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet.location_params">
<span class="sig-name descname"><span class="pre">location_params</span></span><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet.location_params" title="Permalink to this definition"></a></dt>
<dd><p>Parameters for location pertubation function</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet.membership">
<span class="sig-name descname"><span class="pre">membership</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">t</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/common.html#FuzzySet.membership"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet.membership" title="Permalink to this definition"></a></dt>
<dd><p>Calculate the membership value of a given input</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>x</strong> input value</p></li>
<li><p><strong>t</strong> time displacement or perturbation parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>membership value of x at this fuzzy set</p>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet.name">
<span class="sig-name descname"><span class="pre">name</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet.name" title="Permalink to this definition"></a></dt>
<dd><p>The fuzzy set name</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet.noise">
<span class="sig-name descname"><span class="pre">noise</span></span><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet.noise" title="Permalink to this definition"></a></dt>
<dd><p>Pertubation function that adds noise on the membership function</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet.noise_params">
<span class="sig-name descname"><span class="pre">noise_params</span></span><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet.noise_params" title="Permalink to this definition"></a></dt>
<dd><p>Parameters for noise pertubation function</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet.parameters">
<span class="sig-name descname"><span class="pre">parameters</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet.parameters" title="Permalink to this definition"></a></dt>
<dd><p>The parameters of the membership function</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet.perform_location">
<span class="sig-name descname"><span class="pre">perform_location</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">t</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">param</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/common.html#FuzzySet.perform_location"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet.perform_location" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet.perform_width">
<span class="sig-name descname"><span class="pre">perform_width</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">t</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">param</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/common.html#FuzzySet.perform_width"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet.perform_width" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet.perturbate_parameters">
<span class="sig-name descname"><span class="pre">perturbate_parameters</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">t</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/common.html#FuzzySet.perturbate_parameters"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet.perturbate_parameters" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet.type">
<span class="sig-name descname"><span class="pre">type</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet.type" title="Permalink to this definition"></a></dt>
<dd><p>The fuzzy set type (common, composite, nonstationary, etc)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet.width">
<span class="sig-name descname"><span class="pre">width</span></span><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet.width" title="Permalink to this definition"></a></dt>
<dd><p>Pertubation function that affects the width of the membership function</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.FuzzySet.width_params">
<span class="sig-name descname"><span class="pre">width_params</span></span><a class="headerlink" href="#pyFTS.models.nonstationary.common.FuzzySet.width_params" title="Permalink to this definition"></a></dt>
<dd><p>Parameters for width pertubation function</p>
</dd></dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.check_bounds">
<span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.common.</span></span><span class="sig-name descname"><span class="pre">check_bounds</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">partitioner</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">t</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/common.html#check_bounds"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.common.check_bounds" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.check_bounds_index">
<span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.common.</span></span><span class="sig-name descname"><span class="pre">check_bounds_index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">partitioner</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">t</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/common.html#check_bounds_index"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.common.check_bounds_index" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.fuzzify">
<span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.common.</span></span><span class="sig-name descname"><span class="pre">fuzzify</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">inst</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">t</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">fuzzySets</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/common.html#fuzzify"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.common.fuzzify" title="Permalink to this definition"></a></dt>
<dd><p>Calculate the membership values for a data point given nonstationary fuzzy sets</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>inst</strong> data points</p></li>
<li><p><strong>t</strong> time displacement of the instance</p></li>
<li><p><strong>fuzzySets</strong> list of fuzzy sets</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>array of membership values</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.fuzzySeries">
<span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.common.</span></span><span class="sig-name descname"><span class="pre">fuzzySeries</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">fuzzySets</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">ordered_sets</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">window_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">method</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'fuzzy'</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">const_t</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/common.html#fuzzySeries"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.common.fuzzySeries" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.common.window_index">
<span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.common.</span></span><span class="sig-name descname"><span class="pre">window_index</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">t</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">window_size</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/common.html#window_index"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.common.window_index" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</div>
<div class="section" id="module-pyFTS.models.nonstationary.cvfts">
<span id="pyfts-models-nonstationary-cvfts-module"></span><h2>pyFTS.models.nonstationary.cvfts module<a class="headerlink" href="#module-pyFTS.models.nonstationary.cvfts" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.cvfts.</span></span><span class="sig-name descname"><span class="pre">ConditionalVarianceFTS</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/cvfts.html#ConditionalVarianceFTS"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.models.html#pyFTS.models.hofts.HighOrderFTS" title="pyFTS.models.hofts.HighOrderFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.hofts.HighOrderFTS</span></code></a></p>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.alpha_cut">
<span class="sig-name descname"><span class="pre">alpha_cut</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.alpha_cut" title="Permalink to this definition"></a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.auto_update">
<span class="sig-name descname"><span class="pre">auto_update</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.auto_update" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.benchmark_only">
<span class="sig-name descname"><span class="pre">benchmark_only</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.benchmark_only" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.detail">
<span class="sig-name descname"><span class="pre">detail</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.detail" title="Permalink to this definition"></a></dt>
<dd><p>A string with the model detailed information</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.dump">
<span class="sig-name descname"><span class="pre">dump</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.dump" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.flrgs">
<span class="sig-name descname"><span class="pre">flrgs</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.10)"><span class="pre">dict</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.flrgs" title="Permalink to this definition"></a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.forecast">
<span class="sig-name descname"><span class="pre">forecast</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ndata</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/cvfts.html#ConditionalVarianceFTS.forecast"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.forecast" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted values</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.forecast_interval">
<span class="sig-name descname"><span class="pre">forecast_interval</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ndata</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/cvfts.html#ConditionalVarianceFTS.forecast_interval"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.forecast_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the prediction intervals</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.generate_flrg">
<span class="sig-name descname"><span class="pre">generate_flrg</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">flrs</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/cvfts.html#ConditionalVarianceFTS.generate_flrg"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.generate_flrg" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.has_interval_forecasting">
<span class="sig-name descname"><span class="pre">has_interval_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.has_interval_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.has_point_forecasting">
<span class="sig-name descname"><span class="pre">has_point_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.has_point_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.has_probability_forecasting">
<span class="sig-name descname"><span class="pre">has_probability_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.has_probability_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.has_seasonality">
<span class="sig-name descname"><span class="pre">has_seasonality</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.has_seasonality" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.is_clustered">
<span class="sig-name descname"><span class="pre">is_clustered</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.is_clustered" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
a monovariate method, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.is_high_order">
<span class="sig-name descname"><span class="pre">is_high_order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.is_high_order" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.is_multivariate">
<span class="sig-name descname"><span class="pre">is_multivariate</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.is_multivariate" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.is_time_variant">
<span class="sig-name descname"><span class="pre">is_time_variant</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.is_time_variant" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.is_wrapper">
<span class="sig-name descname"><span class="pre">is_wrapper</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.is_wrapper" title="Permalink to this definition"></a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.lags">
<span class="sig-name descname"><span class="pre">lags</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a><span class="p"><span class="pre">]</span></span></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.lags" title="Permalink to this definition"></a></dt>
<dd><p>The list of lag indexes for high order models</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.log">
<span class="sig-name descname"><span class="pre">log</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="pre">pd.DataFrame</span></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.log" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.max_lag">
<span class="sig-name descname"><span class="pre">max_lag</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.max_lag" title="Permalink to this definition"></a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
needed to forecast a single step ahead</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.min_order">
<span class="sig-name descname"><span class="pre">min_order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.min_order" title="Permalink to this definition"></a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.name">
<span class="sig-name descname"><span class="pre">name</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.name" title="Permalink to this definition"></a></dt>
<dd><p>A string with the model name</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.order">
<span class="sig-name descname"><span class="pre">order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.order" title="Permalink to this definition"></a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.original_max">
<span class="sig-name descname"><span class="pre">original_max</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.original_max" title="Permalink to this definition"></a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.original_min">
<span class="sig-name descname"><span class="pre">original_min</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.original_min" title="Permalink to this definition"></a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.partitioner">
<span class="sig-name descname"><span class="pre">partitioner</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference internal" href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner" title="pyFTS.partitioners.partitioner.Partitioner"><span class="pre">partitioner.Partitioner</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.partitioner" title="Permalink to this definition"></a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.perturbation_factors">
<span class="sig-name descname"><span class="pre">perturbation_factors</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/cvfts.html#ConditionalVarianceFTS.perturbation_factors"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.perturbation_factors" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.perturbation_factors__old">
<span class="sig-name descname"><span class="pre">perturbation_factors__old</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/cvfts.html#ConditionalVarianceFTS.perturbation_factors__old"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.perturbation_factors__old" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.shortname">
<span class="sig-name descname"><span class="pre">shortname</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.shortname" title="Permalink to this definition"></a></dt>
<dd><p>A string with a short name or alias for the model</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.standard_horizon">
<span class="sig-name descname"><span class="pre">standard_horizon</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.standard_horizon" title="Permalink to this definition"></a></dt>
<dd><p>Standard forecasting horizon (Default: 1)</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.train">
<span class="sig-name descname"><span class="pre">train</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ndata</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/cvfts.html#ConditionalVarianceFTS.train"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.train" title="Permalink to this definition"></a></dt>
<dd><p>Method specific parameter fitting</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> training time series data</p></li>
<li><p><strong>kwargs</strong> Method specific parameters</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.transformations">
<span class="sig-name descname"><span class="pre">transformations</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a><span class="p"><span class="pre">[</span></span><a class="reference internal" href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation" title="pyFTS.common.transformations.transformation.Transformation"><span class="pre">transformation.Transformation</span></a><span class="p"><span class="pre">]</span></span></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.transformations" title="Permalink to this definition"></a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.transformations_param">
<span class="sig-name descname"><span class="pre">transformations_param</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.transformations_param" title="Permalink to this definition"></a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.uod_clip">
<span class="sig-name descname"><span class="pre">uod_clip</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS.uod_clip" title="Permalink to this definition"></a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
</dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.cvfts.</span></span><span class="sig-name descname"><span class="pre">HighOrderNonstationaryFLRG</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">order</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/cvfts.html#HighOrderNonstationaryFLRG"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.models.html#pyFTS.models.hofts.HighOrderFTS" title="pyFTS.models.hofts.HighOrderFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.hofts.HighOrderFTS</span></code></a></p>
<p>Conventional High Order Fuzzy Logical Relationship Group</p>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.alpha_cut">
<span class="sig-name descname"><span class="pre">alpha_cut</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.alpha_cut" title="Permalink to this definition"></a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.append_lhs">
<span class="sig-name descname"><span class="pre">append_lhs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">c</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/cvfts.html#HighOrderNonstationaryFLRG.append_lhs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.append_lhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.append_rhs">
<span class="sig-name descname"><span class="pre">append_rhs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">c</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/cvfts.html#HighOrderNonstationaryFLRG.append_rhs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.append_rhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.auto_update">
<span class="sig-name descname"><span class="pre">auto_update</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.auto_update" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.benchmark_only">
<span class="sig-name descname"><span class="pre">benchmark_only</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.benchmark_only" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.detail">
<span class="sig-name descname"><span class="pre">detail</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.detail" title="Permalink to this definition"></a></dt>
<dd><p>A string with the model detailed information</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.dump">
<span class="sig-name descname"><span class="pre">dump</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.dump" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.flrgs">
<span class="sig-name descname"><span class="pre">flrgs</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.10)"><span class="pre">dict</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.flrgs" title="Permalink to this definition"></a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.has_interval_forecasting">
<span class="sig-name descname"><span class="pre">has_interval_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.has_interval_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.has_point_forecasting">
<span class="sig-name descname"><span class="pre">has_point_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.has_point_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.has_probability_forecasting">
<span class="sig-name descname"><span class="pre">has_probability_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.has_probability_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.has_seasonality">
<span class="sig-name descname"><span class="pre">has_seasonality</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.has_seasonality" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.is_clustered">
<span class="sig-name descname"><span class="pre">is_clustered</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.is_clustered" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
a monovariate method, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.is_high_order">
<span class="sig-name descname"><span class="pre">is_high_order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.is_high_order" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.is_multivariate">
<span class="sig-name descname"><span class="pre">is_multivariate</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.is_multivariate" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.is_time_variant">
<span class="sig-name descname"><span class="pre">is_time_variant</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.is_time_variant" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.is_wrapper">
<span class="sig-name descname"><span class="pre">is_wrapper</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.is_wrapper" title="Permalink to this definition"></a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.lags">
<span class="sig-name descname"><span class="pre">lags</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a><span class="p"><span class="pre">]</span></span></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.lags" title="Permalink to this definition"></a></dt>
<dd><p>The list of lag indexes for high order models</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.log">
<span class="sig-name descname"><span class="pre">log</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="pre">pd.DataFrame</span></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.log" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.max_lag">
<span class="sig-name descname"><span class="pre">max_lag</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.max_lag" title="Permalink to this definition"></a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
needed to forecast a single step ahead</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.min_order">
<span class="sig-name descname"><span class="pre">min_order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.min_order" title="Permalink to this definition"></a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.name">
<span class="sig-name descname"><span class="pre">name</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.name" title="Permalink to this definition"></a></dt>
<dd><p>A string with the model name</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.order">
<span class="sig-name descname"><span class="pre">order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.order" title="Permalink to this definition"></a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.original_max">
<span class="sig-name descname"><span class="pre">original_max</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.original_max" title="Permalink to this definition"></a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.original_min">
<span class="sig-name descname"><span class="pre">original_min</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.original_min" title="Permalink to this definition"></a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.partitioner">
<span class="sig-name descname"><span class="pre">partitioner</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference internal" href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner" title="pyFTS.partitioners.partitioner.Partitioner"><span class="pre">partitioner.Partitioner</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.partitioner" title="Permalink to this definition"></a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.shortname">
<span class="sig-name descname"><span class="pre">shortname</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.shortname" title="Permalink to this definition"></a></dt>
<dd><p>A string with a short name or alias for the model</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.standard_horizon">
<span class="sig-name descname"><span class="pre">standard_horizon</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.standard_horizon" title="Permalink to this definition"></a></dt>
<dd><p>Standard forecasting horizon (Default: 1)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.transformations">
<span class="sig-name descname"><span class="pre">transformations</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a><span class="p"><span class="pre">[</span></span><a class="reference internal" href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation" title="pyFTS.common.transformations.transformation.Transformation"><span class="pre">transformation.Transformation</span></a><span class="p"><span class="pre">]</span></span></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.transformations" title="Permalink to this definition"></a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.transformations_param">
<span class="sig-name descname"><span class="pre">transformations_param</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.transformations_param" title="Permalink to this definition"></a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.uod_clip">
<span class="sig-name descname"><span class="pre">uod_clip</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG.uod_clip" title="Permalink to this definition"></a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.nonstationary.flrg">
<span id="pyfts-models-nonstationary-flrg-module"></span><h2>pyFTS.models.nonstationary.flrg module<a class="headerlink" href="#module-pyFTS.models.nonstationary.flrg" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.flrg.NonStationaryFLRG">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.flrg.</span></span><span class="sig-name descname"><span class="pre">NonStationaryFLRG</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">LHS</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/flrg.html#NonStationaryFLRG"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.flrg.NonStationaryFLRG" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.common.html#pyFTS.common.flrg.FLRG" title="pyFTS.common.flrg.FLRG"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.flrg.FLRG</span></code></a></p>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_key">
<span class="sig-name descname"><span class="pre">get_key</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/flrg.html#NonStationaryFLRG.get_key"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_key" title="Permalink to this definition"></a></dt>
<dd><p>Returns a unique identifier for this FLRG</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_lower">
<span class="sig-name descname"><span class="pre">get_lower</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/flrg.html#NonStationaryFLRG.get_lower"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_lower" title="Permalink to this definition"></a></dt>
<dd><p>Returns the lower bound value for the RHS fuzzy sets</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>sets</strong> fuzzy sets</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>lower bound value</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_membership">
<span class="sig-name descname"><span class="pre">get_membership</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/flrg.html#NonStationaryFLRG.get_membership"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_membership" title="Permalink to this definition"></a></dt>
<dd><p>Returns the membership value of the FLRG for the input data</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> input data</p></li>
<li><p><strong>sets</strong> fuzzy sets</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>the membership value</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_midpoint">
<span class="sig-name descname"><span class="pre">get_midpoint</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/flrg.html#NonStationaryFLRG.get_midpoint"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_midpoint" title="Permalink to this definition"></a></dt>
<dd><p>Returns the midpoint value for the RHS fuzzy sets</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>sets</strong> fuzzy sets</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>the midpoint value</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_upper">
<span class="sig-name descname"><span class="pre">get_upper</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/flrg.html#NonStationaryFLRG.get_upper"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.flrg.NonStationaryFLRG.get_upper" title="Permalink to this definition"></a></dt>
<dd><p>Returns the upper bound value for the RHS fuzzy sets</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>sets</strong> fuzzy sets</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>upper bound value</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.flrg.NonStationaryFLRG.unpack_args">
<span class="sig-name descname"><span class="pre">unpack_args</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">*</span></span><span class="n"><span class="pre">args</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/flrg.html#NonStationaryFLRG.unpack_args"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.flrg.NonStationaryFLRG.unpack_args" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.nonstationary.honsfts">
<span id="pyfts-models-nonstationary-honsfts-module"></span><h2>pyFTS.models.nonstationary.honsfts module<a class="headerlink" href="#module-pyFTS.models.nonstationary.honsfts" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.honsfts.</span></span><span class="sig-name descname"><span class="pre">HighOrderNonStationaryFLRG</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">order</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFLRG"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.nonstationary.flrg.NonStationaryFLRG" title="pyFTS.models.nonstationary.flrg.NonStationaryFLRG"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.nonstationary.flrg.NonStationaryFLRG</span></code></a></p>
<p>First Order NonStationary Fuzzy Logical Relationship Group</p>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.append_lhs">
<span class="sig-name descname"><span class="pre">append_lhs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">c</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFLRG.append_lhs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.append_lhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.append_rhs">
<span class="sig-name descname"><span class="pre">append_rhs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fset</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFLRG.append_rhs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.append_rhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.get_lower">
<span class="sig-name descname"><span class="pre">get_lower</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">sets</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">perturb</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFLRG.get_lower"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.get_lower" title="Permalink to this definition"></a></dt>
<dd><p>Returns the lower bound value for the RHS fuzzy sets</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>sets</strong> fuzzy sets</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>lower bound value</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.get_midpoint">
<span class="sig-name descname"><span class="pre">get_midpoint</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">sets</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">perturb</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFLRG.get_midpoint"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.get_midpoint" title="Permalink to this definition"></a></dt>
<dd><p>Returns the midpoint value for the RHS fuzzy sets</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>sets</strong> fuzzy sets</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>the midpoint value</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.get_upper">
<span class="sig-name descname"><span class="pre">get_upper</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">sets</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">perturb</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFLRG.get_upper"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.get_upper" title="Permalink to this definition"></a></dt>
<dd><p>Returns the upper bound value for the RHS fuzzy sets</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>sets</strong> fuzzy sets</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>upper bound value</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.weights">
<span class="sig-name descname"><span class="pre">weights</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFLRG.weights"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG.weights" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.honsfts.</span></span><span class="sig-name descname"><span class="pre">HighOrderNonStationaryFTS</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFTS"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS" title="pyFTS.models.nonstationary.nsfts.NonStationaryFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.nonstationary.nsfts.NonStationaryFTS</span></code></a></p>
<p>NonStationaryFTS Fuzzy Time Series</p>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.alpha_cut">
<span class="sig-name descname"><span class="pre">alpha_cut</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.alpha_cut" title="Permalink to this definition"></a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.auto_update">
<span class="sig-name descname"><span class="pre">auto_update</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.auto_update" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.benchmark_only">
<span class="sig-name descname"><span class="pre">benchmark_only</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.benchmark_only" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.configure_lags">
<span class="sig-name descname"><span class="pre">configure_lags</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFTS.configure_lags"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.configure_lags" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.detail">
<span class="sig-name descname"><span class="pre">detail</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.detail" title="Permalink to this definition"></a></dt>
<dd><p>A string with the model detailed information</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.dump">
<span class="sig-name descname"><span class="pre">dump</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.dump" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.flrgs">
<span class="sig-name descname"><span class="pre">flrgs</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.10)"><span class="pre">dict</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.flrgs" title="Permalink to this definition"></a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.forecast">
<span class="sig-name descname"><span class="pre">forecast</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ndata</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFTS.forecast"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.forecast" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted values</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.generate_flrg">
<span class="sig-name descname"><span class="pre">generate_flrg</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFTS.generate_flrg"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.generate_flrg" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.has_interval_forecasting">
<span class="sig-name descname"><span class="pre">has_interval_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.has_interval_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.has_point_forecasting">
<span class="sig-name descname"><span class="pre">has_point_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.has_point_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.has_probability_forecasting">
<span class="sig-name descname"><span class="pre">has_probability_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.has_probability_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.has_seasonality">
<span class="sig-name descname"><span class="pre">has_seasonality</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.has_seasonality" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.is_clustered">
<span class="sig-name descname"><span class="pre">is_clustered</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.is_clustered" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
a monovariate method, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.is_high_order">
<span class="sig-name descname"><span class="pre">is_high_order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.is_high_order" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.is_multivariate">
<span class="sig-name descname"><span class="pre">is_multivariate</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.is_multivariate" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.is_time_variant">
<span class="sig-name descname"><span class="pre">is_time_variant</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.is_time_variant" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.is_wrapper">
<span class="sig-name descname"><span class="pre">is_wrapper</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.is_wrapper" title="Permalink to this definition"></a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.lags">
<span class="sig-name descname"><span class="pre">lags</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a><span class="p"><span class="pre">]</span></span></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.lags" title="Permalink to this definition"></a></dt>
<dd><p>The list of lag indexes for high order models</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.log">
<span class="sig-name descname"><span class="pre">log</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="pre">pd.DataFrame</span></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.log" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.max_lag">
<span class="sig-name descname"><span class="pre">max_lag</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.max_lag" title="Permalink to this definition"></a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
needed to forecast a single step ahead</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.min_order">
<span class="sig-name descname"><span class="pre">min_order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.min_order" title="Permalink to this definition"></a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.name">
<span class="sig-name descname"><span class="pre">name</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.name" title="Permalink to this definition"></a></dt>
<dd><p>A string with the model name</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.order">
<span class="sig-name descname"><span class="pre">order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.order" title="Permalink to this definition"></a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.original_max">
<span class="sig-name descname"><span class="pre">original_max</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.original_max" title="Permalink to this definition"></a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.original_min">
<span class="sig-name descname"><span class="pre">original_min</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.original_min" title="Permalink to this definition"></a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.partitioner">
<span class="sig-name descname"><span class="pre">partitioner</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference internal" href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner" title="pyFTS.partitioners.partitioner.Partitioner"><span class="pre">partitioner.Partitioner</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.partitioner" title="Permalink to this definition"></a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.shortname">
<span class="sig-name descname"><span class="pre">shortname</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.shortname" title="Permalink to this definition"></a></dt>
<dd><p>A string with a short name or alias for the model</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.standard_horizon">
<span class="sig-name descname"><span class="pre">standard_horizon</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.standard_horizon" title="Permalink to this definition"></a></dt>
<dd><p>Standard forecasting horizon (Default: 1)</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.train">
<span class="sig-name descname"><span class="pre">train</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/honsfts.html#HighOrderNonStationaryFTS.train"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.train" title="Permalink to this definition"></a></dt>
<dd><p>Method specific parameter fitting</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> training time series data</p></li>
<li><p><strong>kwargs</strong> Method specific parameters</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.transformations">
<span class="sig-name descname"><span class="pre">transformations</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a><span class="p"><span class="pre">[</span></span><a class="reference internal" href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation" title="pyFTS.common.transformations.transformation.Transformation"><span class="pre">transformation.Transformation</span></a><span class="p"><span class="pre">]</span></span></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.transformations" title="Permalink to this definition"></a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.transformations_param">
<span class="sig-name descname"><span class="pre">transformations_param</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.transformations_param" title="Permalink to this definition"></a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.uod_clip">
<span class="sig-name descname"><span class="pre">uod_clip</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS.uod_clip" title="Permalink to this definition"></a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.nonstationary.nsfts">
<span id="pyfts-models-nonstationary-nsfts-module"></span><h2>pyFTS.models.nonstationary.nsfts module<a class="headerlink" href="#module-pyFTS.models.nonstationary.nsfts" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.nsfts.</span></span><span class="sig-name descname"><span class="pre">ConventionalNonStationaryFLRG</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">LHS</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/nsfts.html#ConventionalNonStationaryFLRG"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.nonstationary.flrg.NonStationaryFLRG" title="pyFTS.models.nonstationary.flrg.NonStationaryFLRG"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.nonstationary.flrg.NonStationaryFLRG</span></code></a></p>
<p>First Order NonStationary Fuzzy Logical Relationship Group</p>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG.append_rhs">
<span class="sig-name descname"><span class="pre">append_rhs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">c</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/nsfts.html#ConventionalNonStationaryFLRG.append_rhs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG.append_rhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG.get_key">
<span class="sig-name descname"><span class="pre">get_key</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/nsfts.html#ConventionalNonStationaryFLRG.get_key"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG.get_key" title="Permalink to this definition"></a></dt>
<dd><p>Returns a unique identifier for this FLRG</p>
</dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.nsfts.</span></span><span class="sig-name descname"><span class="pre">NonStationaryFTS</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/nsfts.html#NonStationaryFTS"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.common.html#pyFTS.common.fts.FTS" title="pyFTS.common.fts.FTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.fts.FTS</span></code></a></p>
<p>NonStationaryFTS Fuzzy Time Series</p>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.alpha_cut">
<span class="sig-name descname"><span class="pre">alpha_cut</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.alpha_cut" title="Permalink to this definition"></a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.auto_update">
<span class="sig-name descname"><span class="pre">auto_update</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.auto_update" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.benchmark_only">
<span class="sig-name descname"><span class="pre">benchmark_only</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.benchmark_only" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.conditional_perturbation_factors">
<span class="sig-name descname"><span class="pre">conditional_perturbation_factors</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/nsfts.html#NonStationaryFTS.conditional_perturbation_factors"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.conditional_perturbation_factors" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.detail">
<span class="sig-name descname"><span class="pre">detail</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.detail" title="Permalink to this definition"></a></dt>
<dd><p>A string with the model detailed information</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.dump">
<span class="sig-name descname"><span class="pre">dump</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.dump" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.flrgs">
<span class="sig-name descname"><span class="pre">flrgs</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.10)"><span class="pre">dict</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.flrgs" title="Permalink to this definition"></a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.forecast">
<span class="sig-name descname"><span class="pre">forecast</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ndata</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/nsfts.html#NonStationaryFTS.forecast"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.forecast" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted values</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.forecast_interval">
<span class="sig-name descname"><span class="pre">forecast_interval</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">ndata</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/nsfts.html#NonStationaryFTS.forecast_interval"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.forecast_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the prediction intervals</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.generate_flrg">
<span class="sig-name descname"><span class="pre">generate_flrg</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">flrs</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/nsfts.html#NonStationaryFTS.generate_flrg"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.generate_flrg" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.has_interval_forecasting">
<span class="sig-name descname"><span class="pre">has_interval_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.has_interval_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.has_point_forecasting">
<span class="sig-name descname"><span class="pre">has_point_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.has_point_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.has_probability_forecasting">
<span class="sig-name descname"><span class="pre">has_probability_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.has_probability_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.has_seasonality">
<span class="sig-name descname"><span class="pre">has_seasonality</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.has_seasonality" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.is_clustered">
<span class="sig-name descname"><span class="pre">is_clustered</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.is_clustered" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
a monovariate method, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.is_high_order">
<span class="sig-name descname"><span class="pre">is_high_order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.is_high_order" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.is_multivariate">
<span class="sig-name descname"><span class="pre">is_multivariate</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.is_multivariate" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.is_time_variant">
<span class="sig-name descname"><span class="pre">is_time_variant</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.is_time_variant" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.is_wrapper">
<span class="sig-name descname"><span class="pre">is_wrapper</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.is_wrapper" title="Permalink to this definition"></a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.lags">
<span class="sig-name descname"><span class="pre">lags</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a><span class="p"><span class="pre">]</span></span></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.lags" title="Permalink to this definition"></a></dt>
<dd><p>The list of lag indexes for high order models</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.log">
<span class="sig-name descname"><span class="pre">log</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="pre">pd.DataFrame</span></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.log" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.max_lag">
<span class="sig-name descname"><span class="pre">max_lag</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.max_lag" title="Permalink to this definition"></a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
needed to forecast a single step ahead</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.min_order">
<span class="sig-name descname"><span class="pre">min_order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.min_order" title="Permalink to this definition"></a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.name">
<span class="sig-name descname"><span class="pre">name</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.name" title="Permalink to this definition"></a></dt>
<dd><p>A string with the model name</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.order">
<span class="sig-name descname"><span class="pre">order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.order" title="Permalink to this definition"></a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.original_max">
<span class="sig-name descname"><span class="pre">original_max</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.original_max" title="Permalink to this definition"></a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.original_min">
<span class="sig-name descname"><span class="pre">original_min</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.original_min" title="Permalink to this definition"></a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.partitioner">
<span class="sig-name descname"><span class="pre">partitioner</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference internal" href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner" title="pyFTS.partitioners.partitioner.Partitioner"><span class="pre">partitioner.Partitioner</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.partitioner" title="Permalink to this definition"></a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.shortname">
<span class="sig-name descname"><span class="pre">shortname</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.shortname" title="Permalink to this definition"></a></dt>
<dd><p>A string with a short name or alias for the model</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.standard_horizon">
<span class="sig-name descname"><span class="pre">standard_horizon</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.standard_horizon" title="Permalink to this definition"></a></dt>
<dd><p>Standard forecasting horizon (Default: 1)</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.train">
<span class="sig-name descname"><span class="pre">train</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/nsfts.html#NonStationaryFTS.train"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.train" title="Permalink to this definition"></a></dt>
<dd><p>Method specific parameter fitting</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> training time series data</p></li>
<li><p><strong>kwargs</strong> Method specific parameters</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.transformations">
<span class="sig-name descname"><span class="pre">transformations</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a><span class="p"><span class="pre">[</span></span><a class="reference internal" href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation" title="pyFTS.common.transformations.transformation.Transformation"><span class="pre">transformation.Transformation</span></a><span class="p"><span class="pre">]</span></span></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.transformations" title="Permalink to this definition"></a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.transformations_param">
<span class="sig-name descname"><span class="pre">transformations_param</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.transformations_param" title="Permalink to this definition"></a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.NonStationaryFTS.uod_clip">
<span class="sig-name descname"><span class="pre">uod_clip</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS.uod_clip" title="Permalink to this definition"></a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
</dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.nsfts.</span></span><span class="sig-name descname"><span class="pre">WeightedNonStationaryFLRG</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">LHS</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/nsfts.html#WeightedNonStationaryFLRG"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.nonstationary.flrg.NonStationaryFLRG" title="pyFTS.models.nonstationary.flrg.NonStationaryFLRG"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.nonstationary.flrg.NonStationaryFLRG</span></code></a></p>
<p>First Order NonStationary Fuzzy Logical Relationship Group</p>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.append_rhs">
<span class="sig-name descname"><span class="pre">append_rhs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">c</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/nsfts.html#WeightedNonStationaryFLRG.append_rhs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.append_rhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.get_key">
<span class="sig-name descname"><span class="pre">get_key</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/nsfts.html#WeightedNonStationaryFLRG.get_key"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.get_key" title="Permalink to this definition"></a></dt>
<dd><p>Returns a unique identifier for this FLRG</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.get_midpoint">
<span class="sig-name descname"><span class="pre">get_midpoint</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">sets</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">perturb</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/nsfts.html#WeightedNonStationaryFLRG.get_midpoint"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.get_midpoint" title="Permalink to this definition"></a></dt>
<dd><p>Returns the midpoint value for the RHS fuzzy sets</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>sets</strong> fuzzy sets</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>the midpoint value</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.weights">
<span class="sig-name descname"><span class="pre">weights</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/nsfts.html#WeightedNonStationaryFLRG.weights"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFLRG.weights" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.nsfts.</span></span><span class="sig-name descname"><span class="pre">WeightedNonStationaryFTS</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/nsfts.html#WeightedNonStationaryFTS"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.nonstationary.nsfts.NonStationaryFTS" title="pyFTS.models.nonstationary.nsfts.NonStationaryFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.nonstationary.nsfts.NonStationaryFTS</span></code></a></p>
<p>Weighted NonStationaryFTS Fuzzy Time Series</p>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.alpha_cut">
<span class="sig-name descname"><span class="pre">alpha_cut</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.alpha_cut" title="Permalink to this definition"></a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.auto_update">
<span class="sig-name descname"><span class="pre">auto_update</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.auto_update" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.benchmark_only">
<span class="sig-name descname"><span class="pre">benchmark_only</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.benchmark_only" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.detail">
<span class="sig-name descname"><span class="pre">detail</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.detail" title="Permalink to this definition"></a></dt>
<dd><p>A string with the model detailed information</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.dump">
<span class="sig-name descname"><span class="pre">dump</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.dump" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.flrgs">
<span class="sig-name descname"><span class="pre">flrgs</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.10)"><span class="pre">dict</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.flrgs" title="Permalink to this definition"></a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.generate_flrg">
<span class="sig-name descname"><span class="pre">generate_flrg</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">flrs</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/nsfts.html#WeightedNonStationaryFTS.generate_flrg"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.generate_flrg" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.has_interval_forecasting">
<span class="sig-name descname"><span class="pre">has_interval_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.has_interval_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.has_point_forecasting">
<span class="sig-name descname"><span class="pre">has_point_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.has_point_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.has_probability_forecasting">
<span class="sig-name descname"><span class="pre">has_probability_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.has_probability_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.has_seasonality">
<span class="sig-name descname"><span class="pre">has_seasonality</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.has_seasonality" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.is_clustered">
<span class="sig-name descname"><span class="pre">is_clustered</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.is_clustered" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
a monovariate method, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.is_high_order">
<span class="sig-name descname"><span class="pre">is_high_order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.is_high_order" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.is_multivariate">
<span class="sig-name descname"><span class="pre">is_multivariate</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.is_multivariate" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.is_time_variant">
<span class="sig-name descname"><span class="pre">is_time_variant</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.is_time_variant" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.is_wrapper">
<span class="sig-name descname"><span class="pre">is_wrapper</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.is_wrapper" title="Permalink to this definition"></a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.lags">
<span class="sig-name descname"><span class="pre">lags</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a><span class="p"><span class="pre">]</span></span></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.lags" title="Permalink to this definition"></a></dt>
<dd><p>The list of lag indexes for high order models</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.log">
<span class="sig-name descname"><span class="pre">log</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="pre">pd.DataFrame</span></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.log" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.max_lag">
<span class="sig-name descname"><span class="pre">max_lag</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.max_lag" title="Permalink to this definition"></a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
needed to forecast a single step ahead</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.min_order">
<span class="sig-name descname"><span class="pre">min_order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.min_order" title="Permalink to this definition"></a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.name">
<span class="sig-name descname"><span class="pre">name</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.name" title="Permalink to this definition"></a></dt>
<dd><p>A string with the model name</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.order">
<span class="sig-name descname"><span class="pre">order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.order" title="Permalink to this definition"></a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.original_max">
<span class="sig-name descname"><span class="pre">original_max</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.original_max" title="Permalink to this definition"></a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.original_min">
<span class="sig-name descname"><span class="pre">original_min</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.original_min" title="Permalink to this definition"></a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.partitioner">
<span class="sig-name descname"><span class="pre">partitioner</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference internal" href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner" title="pyFTS.partitioners.partitioner.Partitioner"><span class="pre">partitioner.Partitioner</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.partitioner" title="Permalink to this definition"></a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.shortname">
<span class="sig-name descname"><span class="pre">shortname</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.shortname" title="Permalink to this definition"></a></dt>
<dd><p>A string with a short name or alias for the model</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.standard_horizon">
<span class="sig-name descname"><span class="pre">standard_horizon</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.standard_horizon" title="Permalink to this definition"></a></dt>
<dd><p>Standard forecasting horizon (Default: 1)</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.train">
<span class="sig-name descname"><span class="pre">train</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/nsfts.html#WeightedNonStationaryFTS.train"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.train" title="Permalink to this definition"></a></dt>
<dd><p>Method specific parameter fitting</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> training time series data</p></li>
<li><p><strong>kwargs</strong> Method specific parameters</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.transformations">
<span class="sig-name descname"><span class="pre">transformations</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a><span class="p"><span class="pre">[</span></span><a class="reference internal" href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation" title="pyFTS.common.transformations.transformation.Transformation"><span class="pre">transformation.Transformation</span></a><span class="p"><span class="pre">]</span></span></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.transformations" title="Permalink to this definition"></a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.transformations_param">
<span class="sig-name descname"><span class="pre">transformations_param</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.transformations_param" title="Permalink to this definition"></a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.uod_clip">
<span class="sig-name descname"><span class="pre">uod_clip</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.nonstationary.nsfts.WeightedNonStationaryFTS.uod_clip" title="Permalink to this definition"></a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.nonstationary.partitioners">
<span id="pyfts-models-nonstationary-partitioners-module"></span><h2>pyFTS.models.nonstationary.partitioners module<a class="headerlink" href="#module-pyFTS.models.nonstationary.partitioners" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.partitioners.</span></span><span class="sig-name descname"><span class="pre">PolynomialNonStationaryPartitioner</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">part</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/partitioners.html#PolynomialNonStationaryPartitioner"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner" title="pyFTS.partitioners.partitioner.Partitioner"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.partitioners.partitioner.Partitioner</span></code></a></p>
<p>Non Stationary Universe of Discourse Partitioner</p>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner.build">
<span class="sig-name descname"><span class="pre">build</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/partitioners.html#PolynomialNonStationaryPartitioner.build"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner.build" title="Permalink to this definition"></a></dt>
<dd><p>Perform the partitioning of the Universe of Discourse</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>data</strong> training data</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner.get_polynomial_perturbations">
<span class="sig-name descname"><span class="pre">get_polynomial_perturbations</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/partitioners.html#PolynomialNonStationaryPartitioner.get_polynomial_perturbations"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner.get_polynomial_perturbations" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner.poly_width">
<span class="sig-name descname"><span class="pre">poly_width</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">par1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">par2</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">rng</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">deg</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/partitioners.html#PolynomialNonStationaryPartitioner.poly_width"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner.poly_width" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner.scale_down">
<span class="sig-name descname"><span class="pre">scale_down</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pct</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/partitioners.html#PolynomialNonStationaryPartitioner.scale_down"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner.scale_down" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner.scale_up">
<span class="sig-name descname"><span class="pre">scale_up</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">pct</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/partitioners.html#PolynomialNonStationaryPartitioner.scale_up"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner.scale_up" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.partitioners.SimpleNonStationaryPartitioner">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.partitioners.</span></span><span class="sig-name descname"><span class="pre">SimpleNonStationaryPartitioner</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">part</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/partitioners.html#SimpleNonStationaryPartitioner"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.partitioners.SimpleNonStationaryPartitioner" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner" title="pyFTS.partitioners.partitioner.Partitioner"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.partitioners.partitioner.Partitioner</span></code></a></p>
<p>Non Stationary Universe of Discourse Partitioner</p>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.partitioners.SimpleNonStationaryPartitioner.build">
<span class="sig-name descname"><span class="pre">build</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/partitioners.html#SimpleNonStationaryPartitioner.build"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.partitioners.SimpleNonStationaryPartitioner.build" title="Permalink to this definition"></a></dt>
<dd><p>Perform the partitioning of the Universe of Discourse</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>data</strong> training data</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.partitioners.simplenonstationary_gridpartitioner_builder">
<span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.partitioners.</span></span><span class="sig-name descname"><span class="pre">simplenonstationary_gridpartitioner_builder</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">npart</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">transformation</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/partitioners.html#simplenonstationary_gridpartitioner_builder"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.partitioners.simplenonstationary_gridpartitioner_builder" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</div>
<div class="section" id="module-pyFTS.models.nonstationary.perturbation">
<span id="pyfts-models-nonstationary-perturbation-module"></span><h2>pyFTS.models.nonstationary.perturbation module<a class="headerlink" href="#module-pyFTS.models.nonstationary.perturbation" title="Permalink to this headline"></a></h2>
<p>Pertubation functions for Non Stationary Fuzzy Sets</p>
<dl class="py function">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.perturbation.exponential">
<span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.perturbation.</span></span><span class="sig-name descname"><span class="pre">exponential</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">parameters</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/perturbation.html#exponential"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.perturbation.exponential" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.perturbation.linear">
<span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.perturbation.</span></span><span class="sig-name descname"><span class="pre">linear</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">parameters</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/perturbation.html#linear"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.perturbation.linear" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.perturbation.periodic">
<span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.perturbation.</span></span><span class="sig-name descname"><span class="pre">periodic</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">parameters</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/perturbation.html#periodic"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.perturbation.periodic" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.perturbation.polynomial">
<span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.perturbation.</span></span><span class="sig-name descname"><span class="pre">polynomial</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">parameters</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/perturbation.html#polynomial"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.perturbation.polynomial" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</div>
<div class="section" id="module-pyFTS.models.nonstationary.util">
<span id="pyfts-models-nonstationary-util-module"></span><h2>pyFTS.models.nonstationary.util module<a class="headerlink" href="#module-pyFTS.models.nonstationary.util" title="Permalink to this headline"></a></h2>
<dl class="py function">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.util.plot_sets">
<span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.util.</span></span><span class="sig-name descname"><span class="pre">plot_sets</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">partitioner</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">start</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">0</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">end</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">10</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tam</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[5,</span> <span class="pre">5]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">colors</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">axes</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">window_size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">only_lines</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">legend</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/util.html#plot_sets"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.util.plot_sets" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="pyFTS.models.nonstationary.util.plot_sets_conditional">
<span class="sig-prename descclassname"><span class="pre">pyFTS.models.nonstationary.util.</span></span><span class="sig-name descname"><span class="pre">plot_sets_conditional</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">step</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">1</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">size</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">[5,</span> <span class="pre">5]</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">colors</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">save</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">file</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">axes</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">fig</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/nonstationary/util.html#plot_sets_conditional"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.nonstationary.util.plot_sets_conditional" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</div>
<div class="section" id="module-pyFTS.models.nonstationary">
<span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-pyFTS.models.nonstationary" title="Permalink to this headline"></a></h2>
<p>Fuzzy time series with nonstationary fuzzy sets, for heteroskedastic data</p>
</div>
</div>
<div class="clearer"></div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<div>
<h3><a href="index.html">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">pyFTS.models.nonstationary package</a><ul>
<li><a class="reference internal" href="#submodules">Submodules</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.nonstationary.common">pyFTS.models.nonstationary.common module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.nonstationary.cvfts">pyFTS.models.nonstationary.cvfts module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.nonstationary.flrg">pyFTS.models.nonstationary.flrg module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.nonstationary.honsfts">pyFTS.models.nonstationary.honsfts module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.nonstationary.nsfts">pyFTS.models.nonstationary.nsfts module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.nonstationary.partitioners">pyFTS.models.nonstationary.partitioners module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.nonstationary.perturbation">pyFTS.models.nonstationary.perturbation module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.nonstationary.util">pyFTS.models.nonstationary.util module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.nonstationary">Module contents</a></li>
</ul>
</li>
</ul>
</div>
<div>
<h4>Previous topic</h4>
<p class="topless"><a href="pyFTS.models.multivariate.html"
title="previous chapter">pyFTS.models.multivariate package</a></p>
</div>
<div>
<h4>Next topic</h4>
<p class="topless"><a href="pyFTS.models.seasonal.html"
title="next chapter">pyFTS.models.seasonal package</a></p>
</div>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/pyFTS.models.nonstationary.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="pyFTS.models.seasonal.html" title="pyFTS.models.seasonal package"
>next</a> |</li>
<li class="right" >
<a href="pyFTS.models.multivariate.html" title="pyFTS.models.multivariate package"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="pyFTS.html" >pyFTS package</a> &#187;</li>
<li class="nav-item nav-item-3"><a href="pyFTS.models.html" >pyFTS.models package</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">pyFTS.models.nonstationary package</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2022, Machine Intelligence and Data Science Laboratory - UFMG - Brazil.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.5.0.
</div>
</body>
</html>