pyFTS/docs/build/html/pyFTS.models.multivariate.html
2022-04-10 14:32:24 -03:00

1679 lines
167 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>pyFTS.models.multivariate package &#8212; pyFTS 1.7 documentation</title>
<link rel="stylesheet" type="text/css" href="_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="_static/bizstyle.css" />
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/bizstyle.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="pyFTS.models.nonstationary package" href="pyFTS.models.nonstationary.html" />
<link rel="prev" title="pyFTS.models.incremental package" href="pyFTS.models.incremental.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="pyFTS.models.nonstationary.html" title="pyFTS.models.nonstationary package"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="pyFTS.models.incremental.html" title="pyFTS.models.incremental package"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="pyFTS.html" >pyFTS package</a> &#187;</li>
<li class="nav-item nav-item-3"><a href="pyFTS.models.html" accesskey="U">pyFTS.models package</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">pyFTS.models.multivariate package</a></li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="pyfts-models-multivariate-package">
<h1>pyFTS.models.multivariate package<a class="headerlink" href="#pyfts-models-multivariate-package" title="Permalink to this headline"></a></h1>
<div class="section" id="module-pyFTS.models.multivariate">
<span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-pyFTS.models.multivariate" title="Permalink to this headline"></a></h2>
<p>Multivariate Fuzzy Time Series methods</p>
</div>
<div class="section" id="submodules">
<h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this headline"></a></h2>
</div>
<div class="section" id="module-pyFTS.models.multivariate.FLR">
<span id="pyfts-models-multivariate-flr-module"></span><h2>pyFTS.models.multivariate.FLR module<a class="headerlink" href="#module-pyFTS.models.multivariate.FLR" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.FLR.FLR">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.multivariate.FLR.</span></span><span class="sig-name descname"><span class="pre">FLR</span></span><a class="reference internal" href="_modules/pyFTS/models/multivariate/FLR.html#FLR"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.FLR.FLR" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.10)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Multivariate Fuzzy Logical Relationship</p>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.FLR.FLR.set_lhs">
<span class="sig-name descname"><span class="pre">set_lhs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">var</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">set</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/FLR.html#FLR.set_lhs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.FLR.FLR.set_lhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.FLR.FLR.set_rhs">
<span class="sig-name descname"><span class="pre">set_rhs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">set</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/FLR.html#FLR.set_rhs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.FLR.FLR.set_rhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.multivariate.common">
<span id="pyfts-models-multivariate-common-module"></span><h2>pyFTS.models.multivariate.common module<a class="headerlink" href="#module-pyFTS.models.multivariate.common" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.common.MultivariateFuzzySet">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.multivariate.common.</span></span><span class="sig-name descname"><span class="pre">MultivariateFuzzySet</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/common.html#MultivariateFuzzySet"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.common.MultivariateFuzzySet" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.common.html#pyFTS.common.Composite.FuzzySet" title="pyFTS.common.Composite.FuzzySet"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.Composite.FuzzySet</span></code></a></p>
<p>Multivariate Composite Fuzzy Set</p>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.common.MultivariateFuzzySet.alpha">
<span class="sig-name descname"><span class="pre">alpha</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.common.MultivariateFuzzySet.alpha" title="Permalink to this definition"></a></dt>
<dd><p>The alpha cut value</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.common.MultivariateFuzzySet.append_set">
<span class="sig-name descname"><span class="pre">append_set</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">variable</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">set</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/common.html#MultivariateFuzzySet.append_set"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.common.MultivariateFuzzySet.append_set" title="Permalink to this definition"></a></dt>
<dd><p>Appends a new fuzzy set from a new variable</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>variable</strong> an multivariate.variable instance</p></li>
<li><p><strong>set</strong> an common.FuzzySet instance</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.common.MultivariateFuzzySet.centroid">
<span class="sig-name descname"><span class="pre">centroid</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.common.MultivariateFuzzySet.centroid" title="Permalink to this definition"></a></dt>
<dd><p>The fuzzy set center of mass (or midpoint)</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.common.MultivariateFuzzySet.membership">
<span class="sig-name descname"><span class="pre">membership</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">x</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/common.html#MultivariateFuzzySet.membership"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.common.MultivariateFuzzySet.membership" title="Permalink to this definition"></a></dt>
<dd><p>Calculate the membership value of a given input</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>x</strong> input value</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>membership value of x at this fuzzy set</p>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.common.MultivariateFuzzySet.name">
<span class="sig-name descname"><span class="pre">name</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.common.MultivariateFuzzySet.name" title="Permalink to this definition"></a></dt>
<dd><p>The fuzzy set name</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.common.MultivariateFuzzySet.parameters">
<span class="sig-name descname"><span class="pre">parameters</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.common.MultivariateFuzzySet.parameters" title="Permalink to this definition"></a></dt>
<dd><p>The parameters of the membership function</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.common.MultivariateFuzzySet.set_target_variable">
<span class="sig-name descname"><span class="pre">set_target_variable</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">variable</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/common.html#MultivariateFuzzySet.set_target_variable"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.common.MultivariateFuzzySet.set_target_variable" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.common.MultivariateFuzzySet.type">
<span class="sig-name descname"><span class="pre">type</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.common.MultivariateFuzzySet.type" title="Permalink to this definition"></a></dt>
<dd><p>The fuzzy set type (common, composite, nonstationary, etc)</p>
</dd></dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.common.fuzzyfy_instance">
<span class="sig-prename descclassname"><span class="pre">pyFTS.models.multivariate.common.</span></span><span class="sig-name descname"><span class="pre">fuzzyfy_instance</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data_point</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">var</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">tuples</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">True</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/common.html#fuzzyfy_instance"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.common.fuzzyfy_instance" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.common.fuzzyfy_instance_clustered">
<span class="sig-prename descclassname"><span class="pre">pyFTS.models.multivariate.common.</span></span><span class="sig-name descname"><span class="pre">fuzzyfy_instance_clustered</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data_point</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">cluster</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/common.html#fuzzyfy_instance_clustered"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.common.fuzzyfy_instance_clustered" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</div>
<div class="section" id="module-pyFTS.models.multivariate.variable">
<span id="pyfts-models-multivariate-variable-module"></span><h2>pyFTS.models.multivariate.variable module<a class="headerlink" href="#module-pyFTS.models.multivariate.variable" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.variable.Variable">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.multivariate.variable.</span></span><span class="sig-name descname"><span class="pre">Variable</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">name</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/variable.html#Variable"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.10)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>A variable of a fuzzy time series multivariate model. Each variable contains its own
transformations and partitioners.</p>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.variable.Variable.alias">
<span class="sig-name descname"><span class="pre">alias</span></span><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable.alias" title="Permalink to this definition"></a></dt>
<dd><p>A string with the alias of the variable</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.variable.Variable.alpha_cut">
<span class="sig-name descname"><span class="pre">alpha_cut</span></span><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable.alpha_cut" title="Permalink to this definition"></a></dt>
<dd><p>Minimal membership value to be considered on fuzzyfication process</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.variable.Variable.apply_inverse_transformations">
<span class="sig-name descname"><span class="pre">apply_inverse_transformations</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/variable.html#Variable.apply_inverse_transformations"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable.apply_inverse_transformations" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.variable.Variable.apply_transformations">
<span class="sig-name descname"><span class="pre">apply_transformations</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/variable.html#Variable.apply_transformations"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable.apply_transformations" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.variable.Variable.build">
<span class="sig-name descname"><span class="pre">build</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/variable.html#Variable.build"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable.build" title="Permalink to this definition"></a></dt>
<dd><dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>kwargs</strong> </p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.variable.Variable.data_label">
<span class="sig-name descname"><span class="pre">data_label</span></span><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable.data_label" title="Permalink to this definition"></a></dt>
<dd><p>A string with the column name on DataFrame</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.variable.Variable.data_type">
<span class="sig-name descname"><span class="pre">data_type</span></span><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable.data_type" title="Permalink to this definition"></a></dt>
<dd><p>The type of the data column on Pandas Dataframe</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.variable.Variable.mask">
<span class="sig-name descname"><span class="pre">mask</span></span><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable.mask" title="Permalink to this definition"></a></dt>
<dd><p>The mask for format the data column on Pandas Dataframe</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.variable.Variable.name">
<span class="sig-name descname"><span class="pre">name</span></span><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable.name" title="Permalink to this definition"></a></dt>
<dd><p>A string with the name of the variable</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.variable.Variable.partitioner">
<span class="sig-name descname"><span class="pre">partitioner</span></span><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable.partitioner" title="Permalink to this definition"></a></dt>
<dd><p>UoD partitioner for the variable data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.variable.Variable.transformation">
<span class="sig-name descname"><span class="pre">transformation</span></span><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable.transformation" title="Permalink to this definition"></a></dt>
<dd><p>Pre processing transformation for the variable</p>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.multivariate.flrg">
<span id="pyfts-models-multivariate-flrg-module"></span><h2>pyFTS.models.multivariate.flrg module<a class="headerlink" href="#module-pyFTS.models.multivariate.flrg" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.flrg.FLRG">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.multivariate.flrg.</span></span><span class="sig-name descname"><span class="pre">FLRG</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/flrg.html#FLRG"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.flrg.FLRG" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.common.html#pyFTS.common.flrg.FLRG" title="pyFTS.common.flrg.FLRG"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.flrg.FLRG</span></code></a></p>
<p>Multivariate Fuzzy Logical Rule Group</p>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.flrg.FLRG.append_rhs">
<span class="sig-name descname"><span class="pre">append_rhs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fset</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/flrg.html#FLRG.append_rhs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.flrg.FLRG.append_rhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.flrg.FLRG.get_lower">
<span class="sig-name descname"><span class="pre">get_lower</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">sets</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/flrg.html#FLRG.get_lower"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.flrg.FLRG.get_lower" title="Permalink to this definition"></a></dt>
<dd><p>Returns the lower bound value for the RHS fuzzy sets</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>sets</strong> fuzzy sets</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>lower bound value</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.flrg.FLRG.get_membership">
<span class="sig-name descname"><span class="pre">get_membership</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">variables</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/flrg.html#FLRG.get_membership"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.flrg.FLRG.get_membership" title="Permalink to this definition"></a></dt>
<dd><p>Returns the membership value of the FLRG for the input data</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> input data</p></li>
<li><p><strong>sets</strong> fuzzy sets</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>the membership value</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.flrg.FLRG.get_upper">
<span class="sig-name descname"><span class="pre">get_upper</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">sets</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/flrg.html#FLRG.get_upper"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.flrg.FLRG.get_upper" title="Permalink to this definition"></a></dt>
<dd><p>Returns the upper bound value for the RHS fuzzy sets</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>sets</strong> fuzzy sets</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>upper bound value</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.flrg.FLRG.set_lhs">
<span class="sig-name descname"><span class="pre">set_lhs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">var</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">fset</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/flrg.html#FLRG.set_lhs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.flrg.FLRG.set_lhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.multivariate.partitioner">
<span id="pyfts-models-multivariate-partitioner-module"></span><h2>pyFTS.models.multivariate.partitioner module<a class="headerlink" href="#module-pyFTS.models.multivariate.partitioner" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.partitioner.MultivariatePartitioner">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.multivariate.partitioner.</span></span><span class="sig-name descname"><span class="pre">MultivariatePartitioner</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/partitioner.html#MultivariatePartitioner"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner" title="pyFTS.partitioners.partitioner.Partitioner"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.partitioners.partitioner.Partitioner</span></code></a></p>
<p>Base class for partitioners which use the MultivariateFuzzySet</p>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.partitioner.MultivariatePartitioner.append">
<span class="sig-name descname"><span class="pre">append</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fset</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/partitioner.html#MultivariatePartitioner.append"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner.append" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.partitioner.MultivariatePartitioner.build">
<span class="sig-name descname"><span class="pre">build</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/partitioner.html#MultivariatePartitioner.build"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner.build" title="Permalink to this definition"></a></dt>
<dd><p>Perform the partitioning of the Universe of Discourse</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>data</strong> training data</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.partitioner.MultivariatePartitioner.build_index">
<span class="sig-name descname"><span class="pre">build_index</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/partitioner.html#MultivariatePartitioner.build_index"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner.build_index" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.partitioner.MultivariatePartitioner.change_target_variable">
<span class="sig-name descname"><span class="pre">change_target_variable</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">variable</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/partitioner.html#MultivariatePartitioner.change_target_variable"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner.change_target_variable" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.partitioner.MultivariatePartitioner.format_data">
<span class="sig-name descname"><span class="pre">format_data</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/partitioner.html#MultivariatePartitioner.format_data"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner.format_data" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.partitioner.MultivariatePartitioner.fuzzyfy">
<span class="sig-name descname"><span class="pre">fuzzyfy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/partitioner.html#MultivariatePartitioner.fuzzyfy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner.fuzzyfy" title="Permalink to this definition"></a></dt>
<dd><p>Fuzzyfy the input data according to this partitioner fuzzy sets.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> input value to be fuzzyfied</p></li>
<li><p><strong>alpha_cut</strong> the minimal membership value to be considered on fuzzyfication (only for mode=sets)</p></li>
<li><p><strong>method</strong> the fuzzyfication method (fuzzy: all fuzzy memberships, maximum: only the maximum membership)</p></li>
<li><p><strong>mode</strong> the fuzzyfication mode (sets: return the fuzzy sets names, vector: return a vector with the membership</p></li>
</ul>
</dd>
</dl>
<p>values for all fuzzy sets, both: return a list with tuples (fuzzy set, membership value) )</p>
<p>:returns a list with the fuzzyfied values, depending on the mode</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.partitioner.MultivariatePartitioner.prune">
<span class="sig-name descname"><span class="pre">prune</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/partitioner.html#MultivariatePartitioner.prune"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner.prune" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.partitioner.MultivariatePartitioner.search">
<span class="sig-name descname"><span class="pre">search</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/partitioner.html#MultivariatePartitioner.search"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner.search" title="Permalink to this definition"></a></dt>
<dd><p>Perform a search for the nearest fuzzy sets of the point data. This function were designed to work with several
overlapped fuzzy sets.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> the value to search for the nearest fuzzy sets</p></li>
<li><p><strong>type</strong> the return type: index for the fuzzy set indexes or name for fuzzy set names.</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the nearest fuzzy sets</p>
</dd>
</dl>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.multivariate.grid">
<span id="pyfts-models-multivariate-grid-module"></span><h2>pyFTS.models.multivariate.grid module<a class="headerlink" href="#module-pyFTS.models.multivariate.grid" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.grid.GridCluster">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.multivariate.grid.</span></span><span class="sig-name descname"><span class="pre">GridCluster</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/grid.html#GridCluster"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.grid.GridCluster" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner" title="pyFTS.models.multivariate.partitioner.MultivariatePartitioner"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.multivariate.partitioner.MultivariatePartitioner</span></code></a></p>
<p>A cartesian product of all fuzzy sets of all variables</p>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.grid.GridCluster.build">
<span class="sig-name descname"><span class="pre">build</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/grid.html#GridCluster.build"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.grid.GridCluster.build" title="Permalink to this definition"></a></dt>
<dd><p>Perform the partitioning of the Universe of Discourse</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>data</strong> training data</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.grid.GridCluster.defuzzyfy">
<span class="sig-name descname"><span class="pre">defuzzyfy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">values</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">mode</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">'both'</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/grid.html#GridCluster.defuzzyfy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.grid.GridCluster.defuzzyfy" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.grid.IncrementalGridCluster">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.multivariate.grid.</span></span><span class="sig-name descname"><span class="pre">IncrementalGridCluster</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/grid.html#IncrementalGridCluster"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.grid.IncrementalGridCluster" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner" title="pyFTS.models.multivariate.partitioner.MultivariatePartitioner"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.multivariate.partitioner.MultivariatePartitioner</span></code></a></p>
<p>Create combinations of fuzzy sets of the variables on demand, incrementally increasing the
multivariate fuzzy set base.</p>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.grid.IncrementalGridCluster.fuzzyfy">
<span class="sig-name descname"><span class="pre">fuzzyfy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/grid.html#IncrementalGridCluster.fuzzyfy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.grid.IncrementalGridCluster.fuzzyfy" title="Permalink to this definition"></a></dt>
<dd><p>Fuzzyfy the input data according to this partitioner fuzzy sets.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> input value to be fuzzyfied</p></li>
<li><p><strong>alpha_cut</strong> the minimal membership value to be considered on fuzzyfication (only for mode=sets)</p></li>
<li><p><strong>method</strong> the fuzzyfication method (fuzzy: all fuzzy memberships, maximum: only the maximum membership)</p></li>
<li><p><strong>mode</strong> the fuzzyfication mode (sets: return the fuzzy sets names, vector: return a vector with the membership</p></li>
</ul>
</dd>
</dl>
<p>values for all fuzzy sets, both: return a list with tuples (fuzzy set, membership value) )</p>
<p>:returns a list with the fuzzyfied values, depending on the mode</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.grid.IncrementalGridCluster.incremental_search">
<span class="sig-name descname"><span class="pre">incremental_search</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/grid.html#IncrementalGridCluster.incremental_search"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.grid.IncrementalGridCluster.incremental_search" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.grid.IncrementalGridCluster.prune">
<span class="sig-name descname"><span class="pre">prune</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/grid.html#IncrementalGridCluster.prune"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.grid.IncrementalGridCluster.prune" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.multivariate.mvfts">
<span id="pyfts-models-multivariate-mvfts-module"></span><h2>pyFTS.models.multivariate.mvfts module<a class="headerlink" href="#module-pyFTS.models.multivariate.mvfts" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.multivariate.mvfts.</span></span><span class="sig-name descname"><span class="pre">MVFTS</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.common.html#pyFTS.common.fts.FTS" title="pyFTS.common.fts.FTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.fts.FTS</span></code></a></p>
<p>Multivariate extension of Chens ConventionalFTS method</p>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.alpha_cut">
<span class="sig-name descname"><span class="pre">alpha_cut</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.alpha_cut" title="Permalink to this definition"></a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.append_transformation">
<span class="sig-name descname"><span class="pre">append_transformation</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">transformation</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.append_transformation"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.append_transformation" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.append_variable">
<span class="sig-name descname"><span class="pre">append_variable</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">var</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.append_variable"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.append_variable" title="Permalink to this definition"></a></dt>
<dd><p>Append a new endogenous variable to the model</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>var</strong> variable object</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.apply_transformations">
<span class="sig-name descname"><span class="pre">apply_transformations</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">params</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">None</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">updateUoD</span></span><span class="o"><span class="pre">=</span></span><span class="default_value"><span class="pre">False</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.apply_transformations"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.apply_transformations" title="Permalink to this definition"></a></dt>
<dd><p>Apply the data transformations for data preprocessing</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> input data</p></li>
<li><p><strong>params</strong> transformation parameters</p></li>
<li><p><strong>updateUoD</strong> </p></li>
<li><p><strong>kwargs</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>preprocessed data</p>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.auto_update">
<span class="sig-name descname"><span class="pre">auto_update</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.auto_update" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.benchmark_only">
<span class="sig-name descname"><span class="pre">benchmark_only</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.benchmark_only" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.clone_parameters">
<span class="sig-name descname"><span class="pre">clone_parameters</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">model</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.clone_parameters"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.clone_parameters" title="Permalink to this definition"></a></dt>
<dd><p>Import the parameters values from other model</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>model</strong> a model to clone the parameters</p>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.detail">
<span class="sig-name descname"><span class="pre">detail</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.detail" title="Permalink to this definition"></a></dt>
<dd><p>A string with the model detailed information</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.dump">
<span class="sig-name descname"><span class="pre">dump</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.dump" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.flrgs">
<span class="sig-name descname"><span class="pre">flrgs</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.10)"><span class="pre">dict</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.flrgs" title="Permalink to this definition"></a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.forecast">
<span class="sig-name descname"><span class="pre">forecast</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.forecast"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.forecast" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted values</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead">
<span class="sig-name descname"><span class="pre">forecast_ahead</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">steps</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.forecast_ahead"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong> the number of steps ahead to forecast (default: 1)</p></li>
<li><p><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted values</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead_interval">
<span class="sig-name descname"><span class="pre">forecast_ahead_interval</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">steps</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.forecast_ahead_interval"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong> the number of steps ahead to forecast</p></li>
<li><p><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted intervals</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.forecast_interval">
<span class="sig-name descname"><span class="pre">forecast_interval</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.forecast_interval"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.forecast_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the prediction intervals</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.format_data">
<span class="sig-name descname"><span class="pre">format_data</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.format_data"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.format_data" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.generate_flrg">
<span class="sig-name descname"><span class="pre">generate_flrg</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">flrs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.generate_flrg"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.generate_flrg" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.generate_flrs">
<span class="sig-name descname"><span class="pre">generate_flrs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.generate_flrs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.generate_flrs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.generate_lhs_flrs">
<span class="sig-name descname"><span class="pre">generate_lhs_flrs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.generate_lhs_flrs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.generate_lhs_flrs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.has_interval_forecasting">
<span class="sig-name descname"><span class="pre">has_interval_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.has_interval_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.has_point_forecasting">
<span class="sig-name descname"><span class="pre">has_point_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.has_point_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.has_probability_forecasting">
<span class="sig-name descname"><span class="pre">has_probability_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.has_probability_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.has_seasonality">
<span class="sig-name descname"><span class="pre">has_seasonality</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.has_seasonality" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.is_clustered">
<span class="sig-name descname"><span class="pre">is_clustered</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.is_clustered" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
a monovariate method, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.is_high_order">
<span class="sig-name descname"><span class="pre">is_high_order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.is_high_order" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.is_multivariate">
<span class="sig-name descname"><span class="pre">is_multivariate</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.is_multivariate" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.is_time_variant">
<span class="sig-name descname"><span class="pre">is_time_variant</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.is_time_variant" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.is_wrapper">
<span class="sig-name descname"><span class="pre">is_wrapper</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.is_wrapper" title="Permalink to this definition"></a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.lags">
<span class="sig-name descname"><span class="pre">lags</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a><span class="p"><span class="pre">]</span></span></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.lags" title="Permalink to this definition"></a></dt>
<dd><p>The list of lag indexes for high order models</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.log">
<span class="sig-name descname"><span class="pre">log</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="pre">pd.DataFrame</span></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.log" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.max_lag">
<span class="sig-name descname"><span class="pre">max_lag</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.max_lag" title="Permalink to this definition"></a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
needed to forecast a single step ahead</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.min_order">
<span class="sig-name descname"><span class="pre">min_order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.min_order" title="Permalink to this definition"></a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.name">
<span class="sig-name descname"><span class="pre">name</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.name" title="Permalink to this definition"></a></dt>
<dd><p>A string with the model name</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.order">
<span class="sig-name descname"><span class="pre">order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.order" title="Permalink to this definition"></a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.original_max">
<span class="sig-name descname"><span class="pre">original_max</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.original_max" title="Permalink to this definition"></a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.original_min">
<span class="sig-name descname"><span class="pre">original_min</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.original_min" title="Permalink to this definition"></a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.partitioner">
<span class="sig-name descname"><span class="pre">partitioner</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference internal" href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner" title="pyFTS.partitioners.partitioner.Partitioner"><span class="pre">partitioner.Partitioner</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.partitioner" title="Permalink to this definition"></a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.shortname">
<span class="sig-name descname"><span class="pre">shortname</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.shortname" title="Permalink to this definition"></a></dt>
<dd><p>A string with a short name or alias for the model</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.standard_horizon">
<span class="sig-name descname"><span class="pre">standard_horizon</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.standard_horizon" title="Permalink to this definition"></a></dt>
<dd><p>Standard forecasting horizon (Default: 1)</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.train">
<span class="sig-name descname"><span class="pre">train</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#MVFTS.train"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.train" title="Permalink to this definition"></a></dt>
<dd><p>Method specific parameter fitting</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> training time series data</p></li>
<li><p><strong>kwargs</strong> Method specific parameters</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.transformations">
<span class="sig-name descname"><span class="pre">transformations</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a><span class="p"><span class="pre">[</span></span><a class="reference internal" href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation" title="pyFTS.common.transformations.transformation.Transformation"><span class="pre">transformation.Transformation</span></a><span class="p"><span class="pre">]</span></span></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.transformations" title="Permalink to this definition"></a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.transformations_param">
<span class="sig-name descname"><span class="pre">transformations_param</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.transformations_param" title="Permalink to this definition"></a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.MVFTS.uod_clip">
<span class="sig-name descname"><span class="pre">uod_clip</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.uod_clip" title="Permalink to this definition"></a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
</dd></dl>
</dd></dl>
<dl class="py function">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.mvfts.product_dict">
<span class="sig-prename descclassname"><span class="pre">pyFTS.models.multivariate.mvfts.</span></span><span class="sig-name descname"><span class="pre">product_dict</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/mvfts.html#product_dict"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.product_dict" title="Permalink to this definition"></a></dt>
<dd><p>Code by Seth Johnson
:param kwargs:
:return:</p>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.multivariate.wmvfts">
<span id="pyfts-models-multivariate-wmvfts-module"></span><h2>pyFTS.models.multivariate.wmvfts module<a class="headerlink" href="#module-pyFTS.models.multivariate.wmvfts" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedFLRG">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.multivariate.wmvfts.</span></span><span class="sig-name descname"><span class="pre">WeightedFLRG</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/wmvfts.html#WeightedFLRG"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedFLRG" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.multivariate.flrg.FLRG" title="pyFTS.models.multivariate.flrg.FLRG"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.multivariate.flrg.FLRG</span></code></a></p>
<p>Weighted Multivariate Fuzzy Logical Rule Group</p>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedFLRG.append_rhs">
<span class="sig-name descname"><span class="pre">append_rhs</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">fset</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/wmvfts.html#WeightedFLRG.append_rhs"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedFLRG.append_rhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_lower">
<span class="sig-name descname"><span class="pre">get_lower</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">sets</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/wmvfts.html#WeightedFLRG.get_lower"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_lower" title="Permalink to this definition"></a></dt>
<dd><p>Returns the lower bound value for the RHS fuzzy sets</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>sets</strong> fuzzy sets</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>lower bound value</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_midpoint">
<span class="sig-name descname"><span class="pre">get_midpoint</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">sets</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/wmvfts.html#WeightedFLRG.get_midpoint"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_midpoint" title="Permalink to this definition"></a></dt>
<dd><p>Returns the midpoint value for the RHS fuzzy sets</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>sets</strong> fuzzy sets</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>the midpoint value</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_upper">
<span class="sig-name descname"><span class="pre">get_upper</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">sets</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/wmvfts.html#WeightedFLRG.get_upper"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_upper" title="Permalink to this definition"></a></dt>
<dd><p>Returns the upper bound value for the RHS fuzzy sets</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>sets</strong> fuzzy sets</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>upper bound value</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedFLRG.weights">
<span class="sig-name descname"><span class="pre">weights</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/wmvfts.html#WeightedFLRG.weights"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedFLRG.weights" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.multivariate.wmvfts.</span></span><span class="sig-name descname"><span class="pre">WeightedMVFTS</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/wmvfts.html#WeightedMVFTS"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.multivariate.mvfts.MVFTS" title="pyFTS.models.multivariate.mvfts.MVFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.multivariate.mvfts.MVFTS</span></code></a></p>
<p>Weighted Multivariate FTS</p>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.alpha_cut">
<span class="sig-name descname"><span class="pre">alpha_cut</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.alpha_cut" title="Permalink to this definition"></a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.auto_update">
<span class="sig-name descname"><span class="pre">auto_update</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.auto_update" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.benchmark_only">
<span class="sig-name descname"><span class="pre">benchmark_only</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.benchmark_only" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.detail">
<span class="sig-name descname"><span class="pre">detail</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.detail" title="Permalink to this definition"></a></dt>
<dd><p>A string with the model detailed information</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.dump">
<span class="sig-name descname"><span class="pre">dump</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.dump" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.flrgs">
<span class="sig-name descname"><span class="pre">flrgs</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.10)"><span class="pre">dict</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.flrgs" title="Permalink to this definition"></a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.generate_flrg">
<span class="sig-name descname"><span class="pre">generate_flrg</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">flrs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/wmvfts.html#WeightedMVFTS.generate_flrg"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.generate_flrg" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.has_interval_forecasting">
<span class="sig-name descname"><span class="pre">has_interval_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.has_interval_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.has_point_forecasting">
<span class="sig-name descname"><span class="pre">has_point_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.has_point_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.has_probability_forecasting">
<span class="sig-name descname"><span class="pre">has_probability_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.has_probability_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.has_seasonality">
<span class="sig-name descname"><span class="pre">has_seasonality</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.has_seasonality" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.is_clustered">
<span class="sig-name descname"><span class="pre">is_clustered</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.is_clustered" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
a monovariate method, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.is_high_order">
<span class="sig-name descname"><span class="pre">is_high_order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.is_high_order" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.is_multivariate">
<span class="sig-name descname"><span class="pre">is_multivariate</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.is_multivariate" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.is_time_variant">
<span class="sig-name descname"><span class="pre">is_time_variant</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.is_time_variant" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.is_wrapper">
<span class="sig-name descname"><span class="pre">is_wrapper</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.is_wrapper" title="Permalink to this definition"></a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.lags">
<span class="sig-name descname"><span class="pre">lags</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a><span class="p"><span class="pre">]</span></span></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.lags" title="Permalink to this definition"></a></dt>
<dd><p>The list of lag indexes for high order models</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.log">
<span class="sig-name descname"><span class="pre">log</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="pre">pd.DataFrame</span></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.log" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.max_lag">
<span class="sig-name descname"><span class="pre">max_lag</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.max_lag" title="Permalink to this definition"></a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
needed to forecast a single step ahead</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.min_order">
<span class="sig-name descname"><span class="pre">min_order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.min_order" title="Permalink to this definition"></a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.name">
<span class="sig-name descname"><span class="pre">name</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.name" title="Permalink to this definition"></a></dt>
<dd><p>A string with the model name</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.order">
<span class="sig-name descname"><span class="pre">order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.order" title="Permalink to this definition"></a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.original_max">
<span class="sig-name descname"><span class="pre">original_max</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.original_max" title="Permalink to this definition"></a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.original_min">
<span class="sig-name descname"><span class="pre">original_min</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.original_min" title="Permalink to this definition"></a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.partitioner">
<span class="sig-name descname"><span class="pre">partitioner</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference internal" href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner" title="pyFTS.partitioners.partitioner.Partitioner"><span class="pre">partitioner.Partitioner</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.partitioner" title="Permalink to this definition"></a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.shortname">
<span class="sig-name descname"><span class="pre">shortname</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.shortname" title="Permalink to this definition"></a></dt>
<dd><p>A string with a short name or alias for the model</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.standard_horizon">
<span class="sig-name descname"><span class="pre">standard_horizon</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.standard_horizon" title="Permalink to this definition"></a></dt>
<dd><p>Standard forecasting horizon (Default: 1)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.transformations">
<span class="sig-name descname"><span class="pre">transformations</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a><span class="p"><span class="pre">[</span></span><a class="reference internal" href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation" title="pyFTS.common.transformations.transformation.Transformation"><span class="pre">transformation.Transformation</span></a><span class="p"><span class="pre">]</span></span></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.transformations" title="Permalink to this definition"></a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.transformations_param">
<span class="sig-name descname"><span class="pre">transformations_param</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.transformations_param" title="Permalink to this definition"></a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.uod_clip">
<span class="sig-name descname"><span class="pre">uod_clip</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.uod_clip" title="Permalink to this definition"></a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.multivariate.cmvfts">
<span id="pyfts-models-multivariate-cmvfts-module"></span><h2>pyFTS.models.multivariate.cmvfts module<a class="headerlink" href="#module-pyFTS.models.multivariate.cmvfts" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.multivariate.cmvfts.</span></span><span class="sig-name descname"><span class="pre">ClusteredMVFTS</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/cmvfts.html#ClusteredMVFTS"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.multivariate.mvfts.MVFTS" title="pyFTS.models.multivariate.mvfts.MVFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.multivariate.mvfts.MVFTS</span></code></a></p>
<p>Meta model for high order, clustered multivariate FTS</p>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.alpha_cut">
<span class="sig-name descname"><span class="pre">alpha_cut</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.alpha_cut" title="Permalink to this definition"></a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.auto_update">
<span class="sig-name descname"><span class="pre">auto_update</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.auto_update" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.benchmark_only">
<span class="sig-name descname"><span class="pre">benchmark_only</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.benchmark_only" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.check_data">
<span class="sig-name descname"><span class="pre">check_data</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/cmvfts.html#ClusteredMVFTS.check_data"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.check_data" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.detail">
<span class="sig-name descname"><span class="pre">detail</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.detail" title="Permalink to this definition"></a></dt>
<dd><p>A string with the model detailed information</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.dump">
<span class="sig-name descname"><span class="pre">dump</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.dump" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.flrgs">
<span class="sig-name descname"><span class="pre">flrgs</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.10)"><span class="pre">dict</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.flrgs" title="Permalink to this definition"></a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast">
<span class="sig-name descname"><span class="pre">forecast</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/cmvfts.html#ClusteredMVFTS.forecast"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted values</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_distribution">
<span class="sig-name descname"><span class="pre">forecast_ahead_distribution</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">steps</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/cmvfts.html#ClusteredMVFTS.forecast_ahead_distribution"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong> the number of steps ahead to forecast</p></li>
<li><p><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted Probability Distributions</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_multivariate">
<span class="sig-name descname"><span class="pre">forecast_ahead_multivariate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="n"><span class="pre">steps</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/cmvfts.html#ClusteredMVFTS.forecast_ahead_multivariate"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_multivariate" title="Permalink to this definition"></a></dt>
<dd><p>Multivariate forecast n step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> Pandas dataframe with one column for each variable and with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong> the number of steps ahead to forecast</p></li>
<li><p><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a Pandas Dataframe object representing the forecasted values for each variable</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_distribution">
<span class="sig-name descname"><span class="pre">forecast_distribution</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/cmvfts.html#ClusteredMVFTS.forecast_distribution"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_interval">
<span class="sig-name descname"><span class="pre">forecast_interval</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/cmvfts.html#ClusteredMVFTS.forecast_interval"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the prediction intervals</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_multivariate">
<span class="sig-name descname"><span class="pre">forecast_multivariate</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/cmvfts.html#ClusteredMVFTS.forecast_multivariate"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_multivariate" title="Permalink to this definition"></a></dt>
<dd><p>Multivariate forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> Pandas dataframe with one column for each variable and with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a Pandas Dataframe object representing the forecasted values for each variable</p>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.fts_method">
<span class="sig-name descname"><span class="pre">fts_method</span></span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.fts_method" title="Permalink to this definition"></a></dt>
<dd><p>The FTS method to be called when a new model is build</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.fts_params">
<span class="sig-name descname"><span class="pre">fts_params</span></span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.fts_params" title="Permalink to this definition"></a></dt>
<dd><p>The FTS method specific parameters</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.fuzzyfy">
<span class="sig-name descname"><span class="pre">fuzzyfy</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/cmvfts.html#ClusteredMVFTS.fuzzyfy"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.fuzzyfy" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.has_interval_forecasting">
<span class="sig-name descname"><span class="pre">has_interval_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.has_interval_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.has_point_forecasting">
<span class="sig-name descname"><span class="pre">has_point_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.has_point_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.has_probability_forecasting">
<span class="sig-name descname"><span class="pre">has_probability_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.has_probability_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.has_seasonality">
<span class="sig-name descname"><span class="pre">has_seasonality</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.has_seasonality" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.is_clustered">
<span class="sig-name descname"><span class="pre">is_clustered</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.is_clustered" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
a monovariate method, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.is_high_order">
<span class="sig-name descname"><span class="pre">is_high_order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.is_high_order" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.is_multivariate">
<span class="sig-name descname"><span class="pre">is_multivariate</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.is_multivariate" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.is_time_variant">
<span class="sig-name descname"><span class="pre">is_time_variant</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.is_time_variant" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.is_wrapper">
<span class="sig-name descname"><span class="pre">is_wrapper</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.is_wrapper" title="Permalink to this definition"></a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.lags">
<span class="sig-name descname"><span class="pre">lags</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a><span class="p"><span class="pre">]</span></span></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.lags" title="Permalink to this definition"></a></dt>
<dd><p>The list of lag indexes for high order models</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.log">
<span class="sig-name descname"><span class="pre">log</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="pre">pd.DataFrame</span></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.log" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.max_lag">
<span class="sig-name descname"><span class="pre">max_lag</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.max_lag" title="Permalink to this definition"></a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
needed to forecast a single step ahead</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.min_order">
<span class="sig-name descname"><span class="pre">min_order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.min_order" title="Permalink to this definition"></a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.model">
<span class="sig-name descname"><span class="pre">model</span></span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.model" title="Permalink to this definition"></a></dt>
<dd><p>The most recent trained model</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.name">
<span class="sig-name descname"><span class="pre">name</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.name" title="Permalink to this definition"></a></dt>
<dd><p>A string with the model name</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.order">
<span class="sig-name descname"><span class="pre">order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.order" title="Permalink to this definition"></a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.original_max">
<span class="sig-name descname"><span class="pre">original_max</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.original_max" title="Permalink to this definition"></a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.original_min">
<span class="sig-name descname"><span class="pre">original_min</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.original_min" title="Permalink to this definition"></a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.partitioner">
<span class="sig-name descname"><span class="pre">partitioner</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference internal" href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner" title="pyFTS.partitioners.partitioner.Partitioner"><span class="pre">partitioner.Partitioner</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.partitioner" title="Permalink to this definition"></a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.shortname">
<span class="sig-name descname"><span class="pre">shortname</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.shortname" title="Permalink to this definition"></a></dt>
<dd><p>A string with a short name or alias for the model</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.standard_horizon">
<span class="sig-name descname"><span class="pre">standard_horizon</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.standard_horizon" title="Permalink to this definition"></a></dt>
<dd><p>Standard forecasting horizon (Default: 1)</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.train">
<span class="sig-name descname"><span class="pre">train</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/cmvfts.html#ClusteredMVFTS.train"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.train" title="Permalink to this definition"></a></dt>
<dd><p>Method specific parameter fitting</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> training time series data</p></li>
<li><p><strong>kwargs</strong> Method specific parameters</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.transformations">
<span class="sig-name descname"><span class="pre">transformations</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a><span class="p"><span class="pre">[</span></span><a class="reference internal" href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation" title="pyFTS.common.transformations.transformation.Transformation"><span class="pre">transformation.Transformation</span></a><span class="p"><span class="pre">]</span></span></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.transformations" title="Permalink to this definition"></a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.transformations_param">
<span class="sig-name descname"><span class="pre">transformations_param</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.transformations_param" title="Permalink to this definition"></a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.uod_clip">
<span class="sig-name descname"><span class="pre">uod_clip</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.uod_clip" title="Permalink to this definition"></a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.multivariate.granular">
<span id="pyfts-models-multivariate-granular-module"></span><h2>pyFTS.models.multivariate.granular module<a class="headerlink" href="#module-pyFTS.models.multivariate.granular" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS">
<em class="property"><span class="pre">class</span><span class="w"> </span></em><span class="sig-prename descclassname"><span class="pre">pyFTS.models.multivariate.granular.</span></span><span class="sig-name descname"><span class="pre">GranularWMVFTS</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/granular.html#GranularWMVFTS"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS" title="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.multivariate.cmvfts.ClusteredMVFTS</span></code></a></p>
<p>Granular multivariate weighted high order FTS</p>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.alpha_cut">
<span class="sig-name descname"><span class="pre">alpha_cut</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.alpha_cut" title="Permalink to this definition"></a></dt>
<dd><p>A float with the minimal membership to be considered on fuzzyfication process</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.auto_update">
<span class="sig-name descname"><span class="pre">auto_update</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.auto_update" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating that model is incremental</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.benchmark_only">
<span class="sig-name descname"><span class="pre">benchmark_only</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.benchmark_only" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.detail">
<span class="sig-name descname"><span class="pre">detail</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.detail" title="Permalink to this definition"></a></dt>
<dd><p>A string with the model detailed information</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.dump">
<span class="sig-name descname"><span class="pre">dump</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.dump" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.flrgs">
<span class="sig-name descname"><span class="pre">flrgs</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#dict" title="(in Python v3.10)"><span class="pre">dict</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.flrgs" title="Permalink to this definition"></a></dt>
<dd><p>The list of Fuzzy Logical Relationship Groups - FLRG</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.has_interval_forecasting">
<span class="sig-name descname"><span class="pre">has_interval_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.has_interval_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports interval forecasting, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.has_point_forecasting">
<span class="sig-name descname"><span class="pre">has_point_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.has_point_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports point forecasting, default: True</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.has_probability_forecasting">
<span class="sig-name descname"><span class="pre">has_probability_forecasting</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.has_probability_forecasting" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support probabilistic forecasting, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.has_seasonality">
<span class="sig-name descname"><span class="pre">has_seasonality</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.has_seasonality" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model supports seasonal indexers, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.is_clustered">
<span class="sig-name descname"><span class="pre">is_clustered</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.is_clustered" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like
a monovariate method, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.is_high_order">
<span class="sig-name descname"><span class="pre">is_high_order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.is_high_order" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support orders greater than 1, default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.is_multivariate">
<span class="sig-name descname"><span class="pre">is_multivariate</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.is_multivariate" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.is_time_variant">
<span class="sig-name descname"><span class="pre">is_time_variant</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.is_time_variant" title="Permalink to this definition"></a></dt>
<dd><p>A boolean value indicating if this model is time variant</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.is_wrapper">
<span class="sig-name descname"><span class="pre">is_wrapper</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.is_wrapper" title="Permalink to this definition"></a></dt>
<dd><p>Indicates that this model is a wrapper for other(s) method(s)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.lags">
<span class="sig-name descname"><span class="pre">lags</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a><span class="p"><span class="pre">[</span></span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a><span class="p"><span class="pre">]</span></span></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.lags" title="Permalink to this definition"></a></dt>
<dd><p>The list of lag indexes for high order models</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.log">
<span class="sig-name descname"><span class="pre">log</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="pre">pd.DataFrame</span></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.log" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.max_lag">
<span class="sig-name descname"><span class="pre">max_lag</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.max_lag" title="Permalink to this definition"></a></dt>
<dd><p>A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags
needed to forecast a single step ahead</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.min_order">
<span class="sig-name descname"><span class="pre">min_order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.min_order" title="Permalink to this definition"></a></dt>
<dd><p>In high order models, this integer value indicates the minimal order supported for the model, default: 1</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.model">
<span class="sig-name descname"><span class="pre">model</span></span><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.model" title="Permalink to this definition"></a></dt>
<dd><p>The most recent trained model</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.name">
<span class="sig-name descname"><span class="pre">name</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.name" title="Permalink to this definition"></a></dt>
<dd><p>A string with the model name</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.order">
<span class="sig-name descname"><span class="pre">order</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.order" title="Permalink to this definition"></a></dt>
<dd><p>A integer with the model order (number of past lags are used on forecasting)</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.original_max">
<span class="sig-name descname"><span class="pre">original_max</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.original_max" title="Permalink to this definition"></a></dt>
<dd><p>A float with the upper limit of the Universe of Discourse, the maximal value found on training data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.original_min">
<span class="sig-name descname"><span class="pre">original_min</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#float" title="(in Python v3.10)"><span class="pre">float</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.original_min" title="Permalink to this definition"></a></dt>
<dd><p>A float with the lower limit of the Universe of Discourse, the minimal value found on training data</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.partitioner">
<span class="sig-name descname"><span class="pre">partitioner</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference internal" href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner" title="pyFTS.partitioners.partitioner.Partitioner"><span class="pre">partitioner.Partitioner</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.partitioner" title="Permalink to this definition"></a></dt>
<dd><p>A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy.</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.shortname">
<span class="sig-name descname"><span class="pre">shortname</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#str" title="(in Python v3.10)"><span class="pre">str</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.shortname" title="Permalink to this definition"></a></dt>
<dd><p>A string with a short name or alias for the model</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.standard_horizon">
<span class="sig-name descname"><span class="pre">standard_horizon</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.10)"><span class="pre">int</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.standard_horizon" title="Permalink to this definition"></a></dt>
<dd><p>Standard forecasting horizon (Default: 1)</p>
</dd></dl>
<dl class="py method">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.train">
<span class="sig-name descname"><span class="pre">train</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">data</span></span></em>, <em class="sig-param"><span class="o"><span class="pre">**</span></span><span class="n"><span class="pre">kwargs</span></span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/multivariate/granular.html#GranularWMVFTS.train"><span class="viewcode-link"><span class="pre">[source]</span></span></a><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.train" title="Permalink to this definition"></a></dt>
<dd><p>Method specific parameter fitting</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> training time series data</p></li>
<li><p><strong>kwargs</strong> Method specific parameters</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.transformations">
<span class="sig-name descname"><span class="pre">transformations</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a><span class="p"><span class="pre">[</span></span><a class="reference internal" href="pyFTS.common.transformations.html#pyFTS.common.transformations.transformation.Transformation" title="pyFTS.common.transformations.transformation.Transformation"><span class="pre">transformation.Transformation</span></a><span class="p"><span class="pre">]</span></span></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.transformations" title="Permalink to this definition"></a></dt>
<dd><p>A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.transformations_param">
<span class="sig-name descname"><span class="pre">transformations_param</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/stdtypes.html#list" title="(in Python v3.10)"><span class="pre">list</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.transformations_param" title="Permalink to this definition"></a></dt>
<dd><p>A list with the specific parameters for each data transformation</p>
</dd></dl>
<dl class="py attribute">
<dt class="sig sig-object py" id="pyFTS.models.multivariate.granular.GranularWMVFTS.uod_clip">
<span class="sig-name descname"><span class="pre">uod_clip</span></span><em class="property"><span class="p"><span class="pre">:</span></span><span class="w"> </span><a class="reference external" href="https://docs.python.org/3/library/functions.html#bool" title="(in Python v3.10)"><span class="pre">bool</span></a></em><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.uod_clip" title="Permalink to this definition"></a></dt>
<dd><p>Flag indicating if the test data will be clipped inside the training Universe of Discourse</p>
</dd></dl>
</dd></dl>
</div>
</div>
<div class="clearer"></div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<div>
<h3><a href="index.html">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">pyFTS.models.multivariate package</a><ul>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate">Module contents</a></li>
<li><a class="reference internal" href="#submodules">Submodules</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.FLR">pyFTS.models.multivariate.FLR module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.common">pyFTS.models.multivariate.common module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.variable">pyFTS.models.multivariate.variable module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.flrg">pyFTS.models.multivariate.flrg module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.partitioner">pyFTS.models.multivariate.partitioner module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.grid">pyFTS.models.multivariate.grid module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.mvfts">pyFTS.models.multivariate.mvfts module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.wmvfts">pyFTS.models.multivariate.wmvfts module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.cmvfts">pyFTS.models.multivariate.cmvfts module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.granular">pyFTS.models.multivariate.granular module</a></li>
</ul>
</li>
</ul>
</div>
<div>
<h4>Previous topic</h4>
<p class="topless"><a href="pyFTS.models.incremental.html"
title="previous chapter">pyFTS.models.incremental package</a></p>
</div>
<div>
<h4>Next topic</h4>
<p class="topless"><a href="pyFTS.models.nonstationary.html"
title="next chapter">pyFTS.models.nonstationary package</a></p>
</div>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/pyFTS.models.multivariate.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="pyFTS.models.nonstationary.html" title="pyFTS.models.nonstationary package"
>next</a> |</li>
<li class="right" >
<a href="pyFTS.models.incremental.html" title="pyFTS.models.incremental package"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="pyFTS.html" >pyFTS package</a> &#187;</li>
<li class="nav-item nav-item-3"><a href="pyFTS.models.html" >pyFTS.models package</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">pyFTS.models.multivariate package</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2022, Machine Intelligence and Data Science Laboratory - UFMG - Brazil.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.5.0.
</div>
</body>
</html>