127 lines
3.4 KiB
Python
127 lines
3.4 KiB
Python
#!/usr/bin/python
|
|
# -*- coding: utf8 -*-
|
|
|
|
import os
|
|
import numpy as np
|
|
import pandas as pd
|
|
import matplotlib as plt
|
|
import matplotlib.pyplot as plt
|
|
from mpl_toolkits.mplot3d import Axes3D
|
|
|
|
import pandas as pd
|
|
from pyFTS.partitioners import Grid, Entropy, FCM, Huarng
|
|
from pyFTS.common import FLR,FuzzySet,Membership,Transformations
|
|
from pyFTS import fts,hofts,ifts,pwfts,tree, chen, ensemble, song, yu, cheng, ismailefendi, sadaei, hwang
|
|
from pyFTS.benchmarks import naive, arima
|
|
from numpy import random
|
|
from pyFTS.benchmarks import benchmarks as bchmk
|
|
from pyFTS.benchmarks import arima, quantreg, Measures
|
|
|
|
os.chdir("/home/petronio/dados/Dropbox/Doutorado/Codigos/")
|
|
|
|
diff = Transformations.Differential(1)
|
|
|
|
passengers = pd.read_csv("DataSets/AirPassengers.csv", sep=",")
|
|
passengers = np.array(passengers["Passengers"])
|
|
|
|
|
|
e = ensemble.AllMethodEnsembleFTS(alpha=0.25, point_method="median", interval_method='quantile')
|
|
|
|
fo_methods = [song.ConventionalFTS, chen.ConventionalFTS, yu.WeightedFTS, cheng.TrendWeightedFTS, sadaei.ExponentialyWeightedFTS,
|
|
ismailefendi.ImprovedWeightedFTS]
|
|
|
|
ho_methods = [hofts.HighOrderFTS, hwang.HighOrderFTS]
|
|
|
|
fs = Grid.GridPartitioner(passengers, 10, transformation=diff)
|
|
|
|
e.appendTransformation(diff)
|
|
|
|
e.train(passengers, fs.sets, order=3)
|
|
|
|
"""
|
|
|
|
for method in fo_methods:
|
|
model = method("")
|
|
model.appendTransformation(diff)
|
|
model.train(passengers, fs.sets)
|
|
e.appendModel(model)
|
|
|
|
|
|
for method in ho_methods:
|
|
for order in [1,2,3]:
|
|
model = method("")
|
|
model.appendTransformation(diff)
|
|
model.train(passengers, fs.sets, order=order)
|
|
e.appendModel(model)
|
|
|
|
|
|
arima100 = arima.ARIMA("", alpha=0.25)
|
|
#tmp.appendTransformation(diff)
|
|
arima100.train(passengers, None, order=(1,0,0))
|
|
|
|
arima101 = arima.ARIMA("", alpha=0.25)
|
|
#tmp.appendTransformation(diff)
|
|
arima101.train(passengers, None, order=(1,0,1))
|
|
|
|
arima200 = arima.ARIMA("", alpha=0.25)
|
|
#tmp.appendTransformation(diff)
|
|
arima200.train(passengers, None, order=(2,0,0))
|
|
|
|
arima201 = arima.ARIMA("", alpha=0.25)
|
|
#tmp.appendTransformation(diff)
|
|
arima201.train(passengers, None, order=(2,0,1))
|
|
|
|
|
|
e.appendModel(arima100)
|
|
e.appendModel(arima101)
|
|
e.appendModel(arima200)
|
|
e.appendModel(arima201)
|
|
|
|
e.train(passengers, None)
|
|
|
|
|
|
_mean = e.forecast(passengers, method="mean")
|
|
print(_mean)
|
|
|
|
_median = e.forecast(passengers, method="median")
|
|
print(_median)
|
|
"""
|
|
"""
|
|
_extremum = e.forecastInterval(passengers, method="extremum")
|
|
print(_extremum)
|
|
|
|
_quantile = e.forecastInterval(passengers, method="quantile", alpha=0.25)
|
|
print(_quantile)
|
|
|
|
|
|
_normal = e.forecastInterval(passengers, method="normal", alpha=0.25)
|
|
print(_normal)
|
|
"""
|
|
|
|
#"""
|
|
_extremum = e.forecastAheadInterval(passengers, 10, method="extremum")
|
|
print(_extremum)
|
|
|
|
_quantile = e.forecastAheadInterval(passengers[:50], 10, method="quantile", alpha=0.05)
|
|
print(_quantile)
|
|
|
|
_quantile = e.forecastAheadInterval(passengers[:50], 10, method="quantile", alpha=0.25)
|
|
print(_quantile)
|
|
|
|
_normal = e.forecastAheadInterval(passengers[:50], 10, method="normal", alpha=0.05)
|
|
print(_normal)
|
|
_normal = e.forecastAheadInterval(passengers[:50], 10, method="normal", alpha=0.25)
|
|
print(_normal)
|
|
#"""
|
|
|
|
#dist = e.forecastAheadDistribution(passengers, 20)
|
|
|
|
#print(dist)
|
|
|
|
#bchmk.plot_compared_intervals_ahead(passengers[:120],[e], ['blue','red'],
|
|
# distributions=[True,False], save=True, file="pictures/distribution_ahead_arma",
|
|
# time_from=60, time_to=10, tam=[12,5])
|
|
|
|
|
|
|