pyFTS/chen.py
2016-10-18 15:45:07 -02:00

63 lines
1.2 KiB
Python

import numpy as np
from pyFTS import *
class ConventionalFLRG:
def __init__(self,LHS):
self.LHS = LHS
self.RHS = set()
def append(self,c):
self.RHS.add(c)
def __str__(self):
tmp = self.LHS + " -> "
tmp2 = ""
for c in self.RHS:
if len(tmp2) > 0:
tmp2 = tmp2 + ","
tmp2 = tmp2 + c
return tmp + tmp2
class ConventionalFTS(fts.FTS):
def __init__(self,name):
super(ConventionalFTS, self).__init__(1,name)
self.flrgs = {}
def forecast(self,data):
mv = common.fuzzyInstance(data, self.sets)
actual = self.sets[ np.argwhere( mv == max(mv) )[0,0] ]
if actual.name not in self.flrgs:
return actual.centroid
flrg = self.flrgs[actual.name]
count = 0.0
denom = 0.0
for s in flrg.RHS:
denom = denom + self.sets[s].centroid
count = count + 1.0
return denom/count
def generateFLRG(self, flrs):
flrgs = {}
for flr in flrs:
if flr.LHS in flrgs:
flrgs[flr.LHS].append(flr.RHS)
else:
flrgs[flr.LHS] = ConventionalFLRG(flr.LHS);
flrgs[flr.LHS].append(flr.RHS)
return (flrgs)
def train(self, data, sets):
self.sets = sets
tmpdata = common.fuzzySeries(data,sets)
flrs = common.generateNonRecurrentFLRs(tmpdata)
self.flrgs = self.generateFLRG(flrs)