pyFTS/ensemble/multiseasonal.py
Petrônio Cândido de Lima e Silva 9861189d50 - Optimizations and bugfixes on Multi Seasonal Ensemble
- Several Bugfixes
 - KDE on ProbabilityDistribution
2017-07-04 12:18:07 -03:00

83 lines
2.5 KiB
Python

#!/usr/bin/python
# -*- coding: utf8 -*-
import numpy as np
import pandas as pd
import math
from operator import itemgetter
from pyFTS.common import FLR, FuzzySet, SortedCollection
from pyFTS import fts, chen, cheng, hofts, hwang, ismailefendi, sadaei, song, yu, sfts
from pyFTS.benchmarks import arima, quantreg
from pyFTS.common import Transformations, Util as cUtil
import scipy.stats as st
from pyFTS.ensemble import ensemble
from pyFTS.models import msfts
from pyFTS.probabilistic import ProbabilityDistribution, kde
from copy import deepcopy
from joblib import Parallel, delayed
import multiprocessing
def train_individual_model(partitioner, train_data, indexer):
pttr = str(partitioner.__module__).split('.')[-1]
diff = "_diff" if partitioner.transformation is not None else ""
_key = "msfts_" + pttr + str(partitioner.partitions) + diff + "_" + indexer.name
print(_key)
model = msfts.MultiSeasonalFTS(_key, indexer=indexer)
model.appendTransformation(partitioner.transformation)
model.train(train_data, partitioner.sets, order=1)
cUtil.persist_obj(model, "models/"+_key+".pkl")
return model
class SeasonalEnsembleFTS(ensemble.EnsembleFTS):
def __init__(self, name, **kwargs):
super(SeasonalEnsembleFTS, self).__init__(name="Seasonal Ensemble FTS", **kwargs)
self.min_order = 1
self.indexers = []
self.partitioners = []
self.is_multivariate = True
self.has_seasonality = True
self.has_probability_forecasting = True
def train(self, data, sets, order=1, parameters=None):
self.original_max = max(data)
self.original_min = min(data)
num_cores = multiprocessing.cpu_count()
pool = {}
count = 0
for ix in self.indexers:
for pt in self.partitioners:
pool[count] = {'ix': ix, 'pt': pt}
count += 1
results = Parallel(n_jobs=num_cores)(
delayed(train_individual_model)(deepcopy(pool[m]['pt']), data, deepcopy(pool[m]['ix']))
for m in pool.keys())
for tmp in results:
self.appendModel(tmp)
cUtil.persist_obj(self, "models/"+self.name+".pkl")
def forecastDistribution(self, data, **kwargs):
ret = []
h = kwargs.get("h",10)
for k in data.index:
tmp = self.get_models_forecasts(data.ix[k])
dist = ProbabilityDistribution.ProbabilityDistribution("KDE",h=h,uod=[self.original_min, self.original_max])
ret.append(dist)
return ret