pyFTS/pyFTS/probabilistic/ProbabilityDistribution.py

338 lines
10 KiB
Python

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pyFTS.common import FuzzySet,SortedCollection,tree
from pyFTS.probabilistic import kde
class ProbabilityDistribution(object):
"""
Represents a discrete or continous probability distribution
If type is histogram, the PDF is discrete
If type is KDE the PDF is continuous
"""
def __init__(self, type = "KDE", **kwargs):
self.uod = kwargs.get("uod", None)
"""Universe of discourse"""
self.data = []
data = kwargs.get("data", None)
self.type = type
"""
If type is histogram, the PDF is discrete
If type is KDE the PDF is continuous
"""
self.bins = kwargs.get("bins", None)
"""Number of bins on a discrete PDF"""
self.labels = kwargs.get("bins_labels", None)
"""Bins labels on a discrete PDF"""
if self.type == "KDE":
self.kde = kde.KernelSmoothing(h=kwargs.get("h", 0.5), kernel=kwargs.get("kernel", "epanechnikov"))
if data is not None and self.uod is None:
_min = np.nanmin(data)
_min = _min * .7 if _min > 0 else _min * 1.3
_max = np.nanmax(data)
_max = _max * 1.3 if _max > 0 else _max * .7
self.uod = [_min, _max]
self.nbins = kwargs.get("num_bins", 100)
if self.bins is None:
self.bins = np.linspace(int(self.uod[0]), int(self.uod[1]), int(self.nbins)).tolist()
self.labels = [str(k) for k in self.bins]
if self.uod is not None:
self.resolution = (self.uod[1] - self.uod[0]) / self.nbins
self.bin_index = SortedCollection.SortedCollection(iterable=sorted(self.bins))
self.quantile_index = None
self.distribution = {}
self.cdf = None
self.qtl = None
self.count = 0
for k in self.bins: self.distribution[k] = 0
if data is not None:
self.append(data)
self.name = kwargs.get("name", "")
def set(self, value, density):
"""
Assert a probability 'density' for a certain value 'value', such that P(value) = density
:param value: A value in the universe of discourse from the distribution
:param density: The probability density to assign to the value
"""
k = self.bin_index.find_ge(value)
self.distribution[k] = density
def append(self, values):
"""
Increment the frequency count for the values
:param values: A list of values to account the frequency
"""
if self.type == "histogram":
for k in values:
v = self.bin_index.find_ge(k)
self.distribution[v] += 1
self.count += 1
else:
self.data.extend(values)
self.distribution = {}
dens = self.density(self.bins)
for v,d in enumerate(dens):
self.distribution[self.bins[v]] = d
def append_interval(self, intervals):
"""
Increment the frequency count for all values inside an interval
:param intervals: A list of intervals do increment the frequency
"""
if self.type == "histogram":
for interval in intervals:
for k in self.bin_index.inside(interval[0], interval[1]):
self.distribution[k] += 1
self.count += 1
def density(self, values):
"""
Return the probability densities for the input values
:param values: List of values to return the densities
:return: List of probability densities for the input values
"""
ret = []
scalar = False
if not isinstance(values, list):
values = [values]
scalar = True
for k in values:
if self.type == "histogram":
v = self.bin_index.find_ge(k)
ret.append(self.distribution[v] / (self.count + 1e-5))
elif self.type == "KDE":
v = self.kde.probability(k, data=self.data)
ret.append(v)
else:
v = self.bin_index.find_ge(k)
ret.append(self.distribution[v])
if scalar:
return ret[0]
return ret
def differential_offset(self, value):
"""
Auxiliary function for probability distributions of differentiated data
:param value:
:return:
"""
nbins = []
dist = {}
for k in self.bins:
nk = k+value
nbins.append(nk)
dist[nk] = self.distribution[k]
self.bins = nbins
self.distribution = dist
self.labels = [str(k) for k in self.bins]
self.bin_index = SortedCollection.SortedCollection(iterable=sorted(self.bins))
self.quantile_index = None
self.cdf = None
self.qtl = None
def expected_value(self):
"""
Return the expected value of the distribution, as E[X] = ∑ x * P(x)
:return: The expected value of the distribution
"""
return np.nansum([v * self.distribution[v] for v in self.bins])
def build_cdf_qtl(self):
ret = 0.0
self.cdf = {}
self.qtl = {}
for k in sorted(self.bins):
ret += self.density(k)
if k not in self.cdf:
self.cdf[k] = ret
if str(ret) not in self.qtl:
self.qtl[str(ret)] = []
self.qtl[str(ret)].append(k)
_keys = [float(k) for k in sorted(self.qtl.keys())]
self.quantile_index = SortedCollection.SortedCollection(iterable=_keys)
def cumulative(self, values):
"""
Return the cumulative probability densities for the input values,
such that F(x) = P(X <= x)
:param values: A list of input values
:return: The cumulative probability densities for the input values
"""
if self.cdf is None:
self.build_cdf_qtl()
if isinstance(values, list):
ret = []
for val in values:
k = self.bin_index.find_ge(val)
ret.append(self.cdf[k])
else:
k = self.bin_index.find_ge(values)
return self.cdf[values]
def quantile(self, values):
"""
Return the Universe of Discourse values in relation to the quantile input values,
such that Q(tau) = min( {x | F(x) >= tau })
:param values: input values
:return: The list of the quantile values for the input values
"""
if self.qtl is None:
self.build_cdf_qtl()
if isinstance(values, list):
ret = []
for val in values:
k = self.quantile_index.find_ge(val)
ret.append(self.qtl[str(k)][0])
else:
k = self.quantile_index.find_ge(values)
ret = self.qtl[str(k)]
return ret
def entropy(self):
"""
Return the entropy of the probability distribution, H(P) = E[ -ln P(X) ] = - ∑ P(x) log ( P(x) )
:return:the entropy of the probability distribution
"""
h = -sum([self.distribution[k] * np.log(self.distribution[k]) if self.distribution[k] > 0 else 0
for k in self.bins])
return h
def crossentropy(self,q):
"""
Cross entropy between the actual probability distribution and the informed one,
H(P,Q) = - ∑ P(x) log ( Q(x) )
:param q: a probabilistic.ProbabilityDistribution object
:return: Cross entropy between this probability distribution and the given distribution
"""
h = -sum([self.distribution[k] * np.log(q.distribution[k]) if self.distribution[k] > 0 else 0
for k in self.bins])
return h
def kullbackleiblerdivergence(self,q):
"""
Kullback-Leibler divergence between the actual probability distribution and the informed one.
DKL(P || Q) = - ∑ P(x) log( P(X) / Q(x) )
:param q: a probabilistic.ProbabilityDistribution object
:return: Kullback-Leibler divergence
"""
h = sum([self.distribution[k] * np.log(self.distribution[k]/q.distribution[k]) if self.distribution[k] > 0 else 0
for k in self.bins])
return h
def empiricalloglikelihood(self):
"""
Empirical Log Likelihood of the probability distribution, L(P) = ∑ log( P(x) )
:return:
"""
_s = 0
for k in self.bins:
if self.distribution[k] > 0:
_s += np.log(self.distribution[k])
return _s
def pseudologlikelihood(self, data):
"""
Pseudo log likelihood of the probability distribution with respect to data
:param data:
:return:
"""
densities = self.density(data)
_s = 0
for k in densities:
if k > 0:
_s += np.log(k)
return _s
def averageloglikelihood(self, data):
"""
Average log likelihood of the probability distribution with respect to data
:param data:
:return:
"""
densities = self.density(data)
_s = 0
for k in densities:
if k > 0:
_s += np.log(k)
return _s / len(data)
def plot(self,axis=None,color="black",tam=[10, 6], title = None):
if axis is None:
fig = plt.figure(figsize=tam)
axis = fig.add_subplot(111)
if self.type == "histogram":
ys = [self.distribution[k]/self.count for k in self.bins]
else:
ys = [self.distribution[k] for k in self.bins]
yp = [0 for k in self.data]
axis.plot(self.data, yp, c="red")
if title is None:
title = self.name
axis.plot(self.bins, ys, c=color)
axis.set_title(title)
axis.set_xlabel('Universe of Discourse')
axis.set_ylabel('Probability')
def __str__(self):
ret = ""
for k in sorted(self.bins):
ret += str(round(k,2)) + ':\t'
if self.type == "histogram":
ret += str(round(self.distribution[k] / self.count,3))
elif self.type == "KDE":
ret += str(round(self.density(k),3))
else:
ret += str(round(self.distribution[k], 6))
ret += '\n'
return ret