pyFTS/pyFTS/partitioners/Grid.py
Petrônio Cândido 9718f48b39 - common.Util.distributed_train
- Big refactoring to change FTS.sets from list to dict. This refactoring allow to remove references to the fuzzy sets from the FLRG and save memory.
 - HOFTS and PWFTS train and forecasting simplification by using the method generate_lhs_flrg
 - Small others bugfixes/improvements
2018-03-03 20:07:50 -03:00

46 lines
1.8 KiB
Python

import numpy as np
import math
import random as rnd
import functools, operator
from pyFTS.common import FuzzySet, Membership
from pyFTS.partitioners import partitioner
class GridPartitioner(partitioner.Partitioner):
"""Even Length Grid Partitioner"""
def __init__(self, **kwargs):
"""
Even Length Grid Partitioner
:param data: Training data of which the universe of discourse will be extracted. The universe of discourse is the open interval between the minimum and maximum values of the training data.
:param npart: The number of universe of discourse partitions, i.e., the number of fuzzy sets that will be created
:param func: Fuzzy membership function (pyFTS.common.Membership)
:param transformation: data transformation to be applied on data
:param indexer:
"""
super(GridPartitioner, self).__init__(name="Grid", **kwargs)
def build(self, data):
sets = {}
kwargs = {'type': self.type, 'variable': self.variable}
dlen = self.max - self.min
partlen = dlen / self.partitions
count = 0
for c in np.arange(self.min, self.max, partlen):
_name = self.get_name(count)
if self.membership_function == Membership.trimf:
sets[_name] = FuzzySet.FuzzySet(_name, Membership.trimf, [c - partlen, c, c + partlen],c,**kwargs)
elif self.membership_function == Membership.gaussmf:
sets[_name] = FuzzySet.FuzzySet(_name, Membership.gaussmf, [c, partlen / 3], c,**kwargs)
elif self.membership_function == Membership.trapmf:
q = partlen / 2
sets[_name] = FuzzySet.FuzzySet(_name, Membership.trapmf, [c - partlen, c - q, c + q, c + partlen], c,**kwargs)
count += 1
self.min = self.min - partlen
return sets