84e6e1abbf
- Refactoring of partitioners for OO design
100 lines
2.7 KiB
Python
100 lines
2.7 KiB
Python
import numpy as np
|
||
import math
|
||
import random as rnd
|
||
import functools, operator
|
||
from pyFTS.common import FuzzySet, Membership
|
||
from pyFTS.partitioners import partitioner
|
||
|
||
# C. H. Cheng, R. J. Chang, and C. A. Yeh, “Entropy-based and trapezoidal fuzzification-based fuzzy time series approach for forecasting IT project cost,”
|
||
# Technol. Forecast. Social Change, vol. 73, no. 5, pp. 524–542, Jun. 2006.
|
||
|
||
|
||
def splitBelow(data,threshold):
|
||
return [k for k in data if k <= threshold]
|
||
|
||
|
||
def splitAbove(data,threshold):
|
||
return [k for k in data if k > threshold]
|
||
|
||
|
||
def PMF(data, threshold):
|
||
a = sum([1.0 for k in splitBelow(data,threshold)])
|
||
b = sum([1.0 for k in splitAbove(data, threshold)])
|
||
l = len(data)
|
||
return [a / l, b / l]
|
||
|
||
|
||
def entropy(data, threshold):
|
||
pmf = PMF(data, threshold)
|
||
if pmf[0] == 0 or pmf[1] == 0:
|
||
return 1
|
||
else:
|
||
return - sum([pmf[0] * math.log(pmf[0]), pmf[1] * math.log(pmf[1])])
|
||
|
||
|
||
def informationGain(data, thres1, thres2):
|
||
return entropy(data, thres1) - entropy(data, thres2)
|
||
|
||
|
||
def bestSplit(data, npart):
|
||
if len(data) < 2:
|
||
return None
|
||
count = 1
|
||
ndata = list(set(data))
|
||
ndata.sort()
|
||
l = len(ndata)
|
||
threshold = 0
|
||
try:
|
||
while count < l and informationGain(data, ndata[count - 1], ndata[count]) <= 0:
|
||
threshold = ndata[count]
|
||
count += 1
|
||
except IndexError:
|
||
print(threshold)
|
||
print (ndata)
|
||
print (count)
|
||
|
||
rem = npart % 2
|
||
|
||
if (npart - rem)/2 > 1:
|
||
p1 = splitBelow(data,threshold)
|
||
p2 = splitAbove(data,threshold)
|
||
|
||
if len(p1) > len(p2):
|
||
np1 = (npart - rem)/2 + rem
|
||
np2 = (npart - rem)/2
|
||
else:
|
||
np1 = (npart - rem) / 2
|
||
np2 = (npart - rem) / 2 + rem
|
||
|
||
tmp = [threshold]
|
||
|
||
for k in bestSplit(p1, np1 ): tmp.append(k)
|
||
for k in bestSplit(p2, np2 ): tmp.append(k)
|
||
|
||
return tmp
|
||
|
||
else:
|
||
return [threshold]
|
||
|
||
class EntropyPartitioner(partitioner.Partitioner):
|
||
def __init__(self, data,npart,func = Membership.trimf):
|
||
super(EntropyPartitioner, self).__init__("Entropy" ,data,npart,func)
|
||
|
||
def build(self, data):
|
||
sets = []
|
||
dmax = max(data)
|
||
dmax += dmax * 0.10
|
||
dmin = min(data)
|
||
dmin -= dmin * 0.10
|
||
|
||
partitions = bestSplit(data, self.partitions)
|
||
partitions.append(dmin)
|
||
partitions.append(dmax)
|
||
partitions = list(set(partitions))
|
||
partitions.sort()
|
||
for c in np.arange(1, len(partitions) - 1):
|
||
sets.append(FuzzySet.FuzzySet(self.prefix + str(c), Membership.trimf,
|
||
[partitions[c - 1], partitions[c], partitions[c + 1]],partitions[c]))
|
||
|
||
return sets
|