82 lines
1.8 KiB
Python
82 lines
1.8 KiB
Python
import numpy as np
|
|
from pyFTS import *
|
|
|
|
class ExponentialyWeightedFLRG:
|
|
def __init__(self,LHS,c):
|
|
self.LHS = LHS
|
|
self.RHS = []
|
|
self.count = 0.0
|
|
self.c = c
|
|
|
|
def append(self,c):
|
|
self.RHS.append(c)
|
|
self.count = self.count + 1.0
|
|
|
|
def weights(self):
|
|
wei = [ self.c**k for k in np.arange(0.0,self.count,1.0)]
|
|
tot = sum( wei )
|
|
return np.array([ k/tot for k in wei ])
|
|
|
|
def __str__(self):
|
|
tmp = self.LHS.name + " -> "
|
|
tmp2 = ""
|
|
cc = 0
|
|
wei = [ self.c**k for k in np.arange(0.0,self.count,1.0)]
|
|
tot = sum( wei )
|
|
for c in sorted(self.RHS, key=lambda s: s.name):
|
|
if len(tmp2) > 0:
|
|
tmp2 = tmp2 + ","
|
|
tmp2 = tmp2 + c.name + "(" + str(wei[cc]/tot) + ")"
|
|
cc = cc + 1
|
|
return tmp + tmp2
|
|
|
|
class ExponentialyWeightedFTS(fts.FTS):
|
|
def __init__(self,name):
|
|
super(ExponentialyWeightedFTS, self).__init__(1,"EWFTS")
|
|
self.name = "Exponentialy Weighted FTS"
|
|
self.detail = "Sadaei"
|
|
self.c = 1
|
|
|
|
def generateFLRG(self, flrs, c):
|
|
flrgs = {}
|
|
for flr in flrs:
|
|
if flr.LHS.name in flrgs:
|
|
flrgs[flr.LHS.name].append(flr.RHS)
|
|
else:
|
|
flrgs[flr.LHS.name] = ExponentialyWeightedFLRG(flr.LHS, c);
|
|
flrgs[flr.LHS.name].append(flr.RHS)
|
|
return (flrgs)
|
|
|
|
def train(self, data, sets, c):
|
|
self.c = c
|
|
self.sets = sets
|
|
tmpdata = common.fuzzySeries(data,sets)
|
|
flrs = common.generateRecurrentFLRs(tmpdata)
|
|
self.flrgs = self.generateFLRG(flrs,c)
|
|
|
|
def forecast(self,data):
|
|
l = 1
|
|
|
|
ndata = np.array(data)
|
|
|
|
l = len(ndata)
|
|
|
|
ret = []
|
|
|
|
for k in np.arange(0,l):
|
|
|
|
mv = common.fuzzyInstance(ndata[k], self.sets)
|
|
|
|
actual = self.sets[ np.argwhere( mv == max(mv) )[0,0] ]
|
|
|
|
if actual.name not in self.flrgs:
|
|
ret.append(actual.centroid)
|
|
else:
|
|
flrg = self.flrgs[actual.name]
|
|
mp = self.getMidpoints(flrg)
|
|
|
|
ret.append( mp.dot( flrg.weights() ))
|
|
|
|
return ret
|
|
|