pyFTS/benchmarks/arima.py
Petrônio Cândido de Lima e Silva 728e8414b7 - General refactoring to include **kwargs on methods signatures
- Ensemble FTS
2017-04-14 19:57:39 -03:00

54 lines
1.8 KiB
Python

#!/usr/bin/python
# -*- coding: utf8 -*-
import numpy as np
from statsmodels.tsa.arima_model import ARIMA as stats_arima
from pyFTS import fts
class ARIMA(fts.FTS):
def __init__(self, order, **kwargs):
super(ARIMA, self).__init__(1, "ARIMA")
self.name = "ARIMA"
self.detail = "Auto Regressive Integrated Moving Average"
self.isHighOrder = True
self.model = None
self.model_fit = None
self.trained_data = None
self.p = 1
self.d = 0
self.q = 0
self.benchmark_only = True
self.minOrder = 1
def train(self, data, sets, order=1, parameters=None):
if parameters is not None:
self.p = parameters[0]
self.d = parameters[1]
self.q = parameters[2]
self.order = max([self.p, self.d, self.q])
self.shortname = "ARIMA(" + str(self.p) + "," + str(self.d) + "," + str(self.q) + ")"
old_fit = self.model_fit
self.model = stats_arima(data, order=(self.p, self.d, self.q))
try:
self.model_fit = self.model.fit(disp=0)
except:
try:
self.model = stats_arima(data, order=(self.p, self.d, self.q))
self.model_fit = self.model.fit(disp=1)
except:
self.model_fit = old_fit
self.trained_data = data #.tolist()
def forecast(self, data, **kwargs):
if self.model_fit is None:
return np.nan
ret = []
for t in data:
output = self.model_fit.forecast()
ret.append( output[0] )
self.trained_data = np.append(self.trained_data, t) #.append(t)
self.train(self.trained_data,None,order=self.order, parameters=(self.p, self.d, self.q))
return ret