2022-04-10 14:32:24 -03:00

254 lines
29 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>pyFTS.benchmarks.Tests &#8212; pyFTS 1.7 documentation</title>
<link rel="stylesheet" type="text/css" href="../../../_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="../../../_static/bizstyle.css" />
<script data-url_root="../../../" id="documentation_options" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/bizstyle.js"></script>
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0" />
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="../../../genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="../../../py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="nav-item nav-item-0"><a href="../../../index.html">pyFTS 1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="../../index.html" accesskey="U">Module code</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">pyFTS.benchmarks.Tests</a></li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<h1>Source code for pyFTS.benchmarks.Tests</h1><div class="highlight"><pre>
<span></span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="kn">from</span> <span class="nn">pyFTS.benchmarks.Measures</span> <span class="k">import</span> <span class="n">acf</span>
<div class="viewcode-block" id="BoxPierceStatistic"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Tests.BoxPierceStatistic">[docs]</a><span class="k">def</span> <span class="nf">BoxPierceStatistic</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">h</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Q Statistic for Box-Pierce test</span>
<span class="sd"> :param data:</span>
<span class="sd"> :param h:</span>
<span class="sd"> :return:</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="n">s</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">h</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
<span class="n">r</span> <span class="o">=</span> <span class="n">acf</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">k</span><span class="p">)</span>
<span class="n">s</span> <span class="o">+=</span> <span class="n">r</span> <span class="o">**</span> <span class="mi">2</span>
<span class="k">return</span> <span class="n">n</span> <span class="o">*</span> <span class="n">s</span></div>
<div class="viewcode-block" id="BoxLjungStatistic"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Tests.BoxLjungStatistic">[docs]</a><span class="k">def</span> <span class="nf">BoxLjungStatistic</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">h</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Q Statistic for LjungBox test</span>
<span class="sd"> :param data:</span>
<span class="sd"> :param h:</span>
<span class="sd"> :return:</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="n">s</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">h</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
<span class="n">r</span> <span class="o">=</span> <span class="n">acf</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">k</span><span class="p">)</span>
<span class="n">s</span> <span class="o">+=</span> <span class="n">r</span> <span class="o">**</span> <span class="mi">2</span> <span class="o">/</span> <span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="n">k</span><span class="p">)</span>
<span class="k">return</span> <span class="n">n</span> <span class="o">*</span> <span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">2</span><span class="p">)</span> <span class="o">*</span> <span class="n">s</span></div>
<div class="viewcode-block" id="format_experiment_table"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Tests.format_experiment_table">[docs]</a><span class="k">def</span> <span class="nf">format_experiment_table</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">exclude</span><span class="o">=</span><span class="p">[],</span> <span class="n">replace</span><span class="o">=</span><span class="p">{},</span> <span class="n">csv</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">std</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="n">rows</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">columns</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">datasets</span> <span class="o">=</span> <span class="n">df</span><span class="o">.</span><span class="n">Dataset</span><span class="o">.</span><span class="n">unique</span><span class="p">()</span>
<span class="n">models</span> <span class="o">=</span> <span class="n">df</span><span class="o">.</span><span class="n">Model</span><span class="o">.</span><span class="n">unique</span><span class="p">()</span>
<span class="k">for</span> <span class="n">model</span> <span class="ow">in</span> <span class="n">models</span><span class="p">:</span>
<span class="n">test</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">any</span><span class="p">([</span><span class="n">model</span><span class="o">.</span><span class="n">rfind</span><span class="p">(</span><span class="n">k</span><span class="p">)</span> <span class="o">!=</span> <span class="o">-</span><span class="mi">1</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">exclude</span><span class="p">])</span> <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">exclude</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span> <span class="k">else</span> <span class="kc">False</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">test</span><span class="p">:</span>
<span class="n">columns</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>
<span class="k">for</span> <span class="n">dataset</span> <span class="ow">in</span> <span class="n">datasets</span><span class="p">:</span>
<span class="n">row</span> <span class="o">=</span> <span class="p">[</span><span class="n">dataset</span><span class="p">]</span>
<span class="k">if</span> <span class="n">std</span><span class="p">:</span>
<span class="n">row_std</span> <span class="o">=</span> <span class="p">[</span><span class="n">dataset</span><span class="p">]</span>
<span class="k">for</span> <span class="n">model</span> <span class="ow">in</span> <span class="n">columns</span><span class="p">:</span>
<span class="n">avg</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">nanmin</span><span class="p">(</span><span class="n">df</span><span class="p">[(</span><span class="n">df</span><span class="o">.</span><span class="n">Dataset</span> <span class="o">==</span> <span class="n">dataset</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">Model</span> <span class="o">==</span> <span class="n">model</span><span class="p">)][</span><span class="s2">&quot;AVG&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">values</span><span class="p">)</span>
<span class="n">row</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">avg</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span>
<span class="k">if</span> <span class="n">std</span><span class="p">:</span>
<span class="n">_std</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">nanmin</span><span class="p">(</span><span class="n">df</span><span class="p">[(</span><span class="n">df</span><span class="o">.</span><span class="n">Dataset</span> <span class="o">==</span> <span class="n">dataset</span><span class="p">)</span> <span class="o">&amp;</span> <span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">Model</span> <span class="o">==</span> <span class="n">model</span><span class="p">)][</span><span class="s2">&quot;STD&quot;</span><span class="p">]</span><span class="o">.</span><span class="n">values</span><span class="p">)</span>
<span class="n">row_std</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="s2">&quot;(&quot;</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="nb">round</span><span class="p">(</span><span class="n">_std</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span> <span class="o">+</span> <span class="s2">&quot;)&quot;</span><span class="p">)</span>
<span class="n">rows</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">row</span><span class="p">)</span>
<span class="k">if</span> <span class="n">std</span><span class="p">:</span>
<span class="n">rows</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">row_std</span><span class="p">)</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">columns</span><span class="p">)):</span>
<span class="k">if</span> <span class="n">columns</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="ow">in</span> <span class="n">replace</span><span class="p">:</span>
<span class="n">columns</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">=</span> <span class="n">replace</span><span class="p">[</span><span class="n">columns</span><span class="p">[</span><span class="n">k</span><span class="p">]]</span>
<span class="n">columns</span><span class="o">.</span><span class="n">insert</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="s2">&quot;dataset&quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="n">csv</span><span class="p">:</span>
<span class="n">header</span> <span class="o">=</span> <span class="s2">&quot;&quot;</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">columns</span><span class="p">)):</span>
<span class="k">if</span> <span class="n">k</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">header</span> <span class="o">+=</span> <span class="s2">&quot;,&quot;</span>
<span class="n">header</span> <span class="o">+=</span> <span class="n">columns</span><span class="p">[</span><span class="n">k</span><span class="p">]</span>
<span class="n">body</span> <span class="o">=</span> <span class="s2">&quot;&quot;</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">rows</span><span class="p">)):</span>
<span class="n">row</span> <span class="o">=</span> <span class="s2">&quot;&quot;</span>
<span class="k">for</span> <span class="n">w</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">rows</span><span class="p">[</span><span class="n">k</span><span class="p">])):</span>
<span class="k">if</span> <span class="n">w</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">row</span> <span class="o">+=</span> <span class="s2">&quot;,&quot;</span>
<span class="n">row</span> <span class="o">+=</span> <span class="nb">str</span><span class="p">(</span><span class="n">rows</span><span class="p">[</span><span class="n">k</span><span class="p">][</span><span class="n">w</span><span class="p">])</span>
<span class="n">body</span> <span class="o">+=</span> <span class="s1">&#39;</span><span class="se">\n</span><span class="si">{}</span><span class="s1">&#39;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">row</span><span class="p">)</span>
<span class="k">return</span> <span class="n">header</span> <span class="o">+</span> <span class="n">body</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">rows</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span><span class="n">columns</span><span class="p">)</span>
<span class="k">return</span> <span class="n">ret</span></div>
<div class="viewcode-block" id="test_mean_equality"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Tests.test_mean_equality">[docs]</a><span class="k">def</span> <span class="nf">test_mean_equality</span><span class="p">(</span><span class="n">tests</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=.</span><span class="mi">05</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">&#39;friedman&#39;</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Test for the equality of the means, with alpha confidence level.</span>
<span class="sd"> H_0: There&#39;s no significant difference between the means</span>
<span class="sd"> H_1: There is at least one significant difference between the means</span>
<span class="sd"> :param tests:</span>
<span class="sd"> :param alpha:</span>
<span class="sd"> :param method:</span>
<span class="sd"> :return:</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="kn">from</span> <span class="nn">stac.stac</span> <span class="k">import</span> <span class="n">nonparametric_tests</span> <span class="k">as</span> <span class="n">npt</span>
<span class="n">methods</span> <span class="o">=</span> <span class="n">tests</span><span class="o">.</span><span class="n">columns</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span>
<span class="n">values</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">methods</span><span class="p">:</span>
<span class="n">values</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tests</span><span class="p">[</span><span class="n">k</span><span class="p">]</span><span class="o">.</span><span class="n">values</span><span class="p">)</span>
<span class="k">if</span> <span class="n">method</span><span class="o">==</span><span class="s1">&#39;quade&#39;</span><span class="p">:</span>
<span class="n">f_value</span><span class="p">,</span> <span class="n">p_value</span><span class="p">,</span> <span class="n">rankings</span><span class="p">,</span> <span class="n">pivots</span> <span class="o">=</span> <span class="n">npt</span><span class="o">.</span><span class="n">quade_test</span><span class="p">(</span><span class="o">*</span><span class="n">values</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">method</span><span class="o">==</span><span class="s1">&#39;friedman&#39;</span><span class="p">:</span>
<span class="n">f_value</span><span class="p">,</span> <span class="n">p_value</span><span class="p">,</span> <span class="n">rankings</span><span class="p">,</span> <span class="n">pivots</span> <span class="o">=</span> <span class="n">npt</span><span class="o">.</span><span class="n">friedman_aligned_ranks_test</span><span class="p">(</span><span class="o">*</span><span class="n">values</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">&#39;Unknown test method!&#39;</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;F-Value: </span><span class="si">{}</span><span class="s2"> </span><span class="se">\t</span><span class="s2">p-Value: </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">f_value</span><span class="p">,</span> <span class="n">p_value</span><span class="p">))</span>
<span class="k">if</span> <span class="n">p_value</span> <span class="o">&lt;</span> <span class="n">alpha</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;</span><span class="se">\n</span><span class="s2">H0 is rejected!</span><span class="se">\n</span><span class="s2">&quot;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;</span><span class="se">\n</span><span class="s2">H0 is accepted!</span><span class="se">\n</span><span class="s2">&quot;</span><span class="p">)</span>
<span class="n">post_hoc</span> <span class="o">=</span> <span class="p">{}</span>
<span class="n">rows</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">methods</span><span class="p">)):</span>
<span class="n">rows</span><span class="o">.</span><span class="n">append</span><span class="p">([</span><span class="n">methods</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="n">rankings</span><span class="p">[</span><span class="n">k</span><span class="p">]])</span>
<span class="n">post_hoc</span><span class="p">[</span><span class="n">methods</span><span class="p">[</span><span class="n">k</span><span class="p">]]</span> <span class="o">=</span> <span class="n">pivots</span><span class="p">[</span><span class="n">k</span><span class="p">]</span>
<span class="k">return</span> <span class="p">[</span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">rows</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;METHOD&#39;</span><span class="p">,</span> <span class="s1">&#39;RANK&#39;</span><span class="p">])</span><span class="o">.</span><span class="n">sort_values</span><span class="p">([</span><span class="s1">&#39;RANK&#39;</span><span class="p">]),</span> <span class="n">post_hoc</span><span class="p">]</span></div>
<div class="viewcode-block" id="post_hoc_tests"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.Tests.post_hoc_tests">[docs]</a><span class="k">def</span> <span class="nf">post_hoc_tests</span><span class="p">(</span><span class="n">post_hoc</span><span class="p">,</span> <span class="n">control_method</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=.</span><span class="mi">05</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">&#39;finner&#39;</span><span class="p">):</span>
<span class="sd">&#39;&#39;&#39;</span>
<span class="sd"> Finner paired post-hoc test with NSFTS as control method.</span>
<span class="sd"> $H_0$: There is no significant difference between the means</span>
<span class="sd"> $H_1$: There is a significant difference between the means</span>
<span class="sd"> :param post_hoc:</span>
<span class="sd"> :param control_method:</span>
<span class="sd"> :param alpha:</span>
<span class="sd"> :param method:</span>
<span class="sd"> :return:</span>
<span class="sd"> &#39;&#39;&#39;</span>
<span class="kn">from</span> <span class="nn">stac.stac</span> <span class="k">import</span> <span class="n">nonparametric_tests</span> <span class="k">as</span> <span class="n">npt</span>
<span class="k">if</span> <span class="n">method</span> <span class="o">==</span> <span class="s1">&#39;bonferroni_dunn&#39;</span><span class="p">:</span>
<span class="n">comparisons</span><span class="p">,</span> <span class="n">z_values</span><span class="p">,</span> <span class="n">p_values</span><span class="p">,</span> <span class="n">adj_p_values</span> <span class="o">=</span> <span class="n">npt</span><span class="o">.</span><span class="n">bonferroni_dunn_test</span><span class="p">(</span><span class="n">post_hoc</span><span class="p">,</span><span class="n">control_method</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">method</span> <span class="o">==</span> <span class="s1">&#39;holm&#39;</span><span class="p">:</span>
<span class="n">comparisons</span><span class="p">,</span> <span class="n">z_values</span><span class="p">,</span> <span class="n">p_values</span><span class="p">,</span> <span class="n">adj_p_values</span> <span class="o">=</span> <span class="n">npt</span><span class="o">.</span><span class="n">holm_test</span><span class="p">(</span><span class="n">post_hoc</span><span class="p">,</span><span class="n">control_method</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">method</span> <span class="o">==</span> <span class="s1">&#39;finner&#39;</span><span class="p">:</span>
<span class="n">comparisons</span><span class="p">,</span> <span class="n">z_values</span><span class="p">,</span> <span class="n">p_values</span><span class="p">,</span> <span class="n">adj_p_values</span> <span class="o">=</span> <span class="n">npt</span><span class="o">.</span><span class="n">finner_test</span><span class="p">(</span><span class="n">post_hoc</span><span class="p">,</span> <span class="n">control_method</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s1">&#39;Unknown test method!&#39;</span><span class="p">)</span>
<span class="n">rows</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">comparisons</span><span class="p">)):</span>
<span class="n">test</span> <span class="o">=</span> <span class="s1">&#39;H0 Accepted&#39;</span> <span class="k">if</span> <span class="n">adj_p_values</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">&gt;</span> <span class="n">alpha</span> <span class="k">else</span> <span class="s1">&#39;H0 Rejected&#39;</span>
<span class="n">rows</span><span class="o">.</span><span class="n">append</span><span class="p">([</span><span class="n">comparisons</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="n">z_values</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="n">p_values</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="n">adj_p_values</span><span class="p">[</span><span class="n">k</span><span class="p">],</span> <span class="n">test</span><span class="p">])</span>
<span class="k">return</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">rows</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;COMPARISON&#39;</span><span class="p">,</span> <span class="s1">&#39;Z-VALUE&#39;</span><span class="p">,</span> <span class="s1">&#39;P-VALUE&#39;</span><span class="p">,</span> <span class="s1">&#39;ADJUSTED P-VALUE&#39;</span><span class="p">,</span> <span class="s1">&#39;Result&#39;</span><span class="p">])</span></div>
</pre></div>
<div class="clearer"></div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="../../../search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false"/>
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="../../../genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="../../../py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="nav-item nav-item-0"><a href="../../../index.html">pyFTS 1.7 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="../../index.html" >Module code</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">pyFTS.benchmarks.Tests</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2022, Machine Intelligence and Data Science Laboratory - UFMG - Brazil.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.5.0.
</div>
</body>
</html>