pyFTS/benchmarks/benchmarks.py

498 lines
16 KiB
Python

import numpy as np
import pandas as pd
import matplotlib as plt
import matplotlib.colors as pltcolors
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.cross_validation import KFold
import Measures
from pyFTS.partitioners import Grid
from pyFTS.common import Membership,FuzzySet,FLR,Transformations
def Teste(par):
x = np.arange(1,par)
y = [ yy**yy for yyy in x]
plt.plot(x,y)
def getIntervalStatistics(original,models):
ret = "Model & RMSE & MAPE & Sharpness & Resolution & Coverage \\ \n"
for fts in models:
forecasts = fts.forecast(original)
ret = ret + fts.shortname + " & "
ret = ret + str( round(Measures.rmse_interval(original[fts.order-1 :],forecasts),2)) + " & "
ret = ret + str( round(Measures.mape_interval(original[fts.order-1 :],forecasts),2)) + " & "
ret = ret + str( round(Measures.sharpness(forecasts),2)) + " & "
ret = ret + str( round(Measures.resolution(forecasts),2)) + " & "
ret = ret + str( round(Measures.coverage(original[fts.order-1 :],forecasts),2)) + " \\ \n"
return ret
def plotDistribution(dist):
for k in dist.index:
alpha = np.array([dist[x][k] for x in dist])*100
x = [k for x in np.arange(0,len(alpha))]
y = dist.columns
plt.scatter(x,y,c=alpha,marker='s',linewidths=0,cmap='Oranges',norm=pltcolors.Normalize(vmin=0,vmax=1),vmin=0,vmax=1,edgecolors=None)
def plotComparedSeries(original,models, colors):
fig = plt.figure(figsize=[25,10])
ax = fig.add_subplot(111)
mi = []
ma = []
ax.plot(original,color='black',label="Original")
count = 0
for fts in models:
forecasted = fts.forecast(original)
if fts.isInterval:
lower = [kk[0] for kk in forecasted]
upper = [kk[1] for kk in forecasted]
mi.append(min(lower))
ma.append(max(upper))
for k in np.arange(0,fts.order):
lower.insert(0,None)
upper.insert(0,None)
ax.plot(lower,color=colors[count],label=fts.shortname)
ax.plot(upper,color=colors[count])
else:
mi.append(min(forecasted))
ma.append(max(forecasted))
forecasted.insert(0,None)
ax.plot(forecasted,color=colors[count],label=fts.shortname)
handles0, labels0 = ax.get_legend_handles_labels()
ax.legend(handles0,labels0)
count = count + 1
#ax.set_title(fts.name)
ax.set_ylim([min(mi),max(ma)])
ax.set_ylabel('F(T)')
ax.set_xlabel('T')
ax.set_xlim([0,len(original)])
def plotComparedIntervalsAhead(original,models, colors, distributions, time_from, time_to):
fig = plt.figure(figsize=[25,10])
ax = fig.add_subplot(111)
mi = []
ma = []
count = 0
for fts in models:
if fts.isDensity and distributions[count]:
density = fts.forecastDistributionAhead(original[:time_from],time_to,25)
for k in density.index:
alpha = np.array([density[x][k] for x in density])*100
x = [time_from + fts.order + k for x in np.arange(0,len(alpha))]
y = density.columns
ax.scatter(x,y,c=alpha,marker='s',linewidths=0,cmap='Oranges',
norm=pltcolors.Normalize(vmin=0,vmax=1),vmin=0,vmax=1,edgecolors=None)
if fts.isInterval:
forecasts = fts.forecastAhead(original[:time_from],time_to)
lower = [kk[0] for kk in forecasts]
upper = [kk[1] for kk in forecasts]
mi.append(min(lower))
ma.append(max(upper))
for k in np.arange(0,time_from):
lower.insert(0,None)
upper.insert(0,None)
ax.plot(lower,color=colors[count],label=fts.shortname)
ax.plot(upper,color=colors[count])
else:
forecasts = fts.forecast(original)
mi.append(min(forecasts))
ma.append(max(forecasts))
for k in np.arange(0,time_from):
forecasts.insert(0,None)
ax.plot(forecasts,color=colors[count],label=fts.shortname)
handles0, labels0 = ax.get_legend_handles_labels()
ax.legend(handles0,labels0)
count = count + 1
ax.plot(original,color='black',label="Original")
#ax.set_title(fts.name)
ax.set_ylim([min(mi),max(ma)])
ax.set_ylabel('F(T)')
ax.set_xlabel('T')
ax.set_xlim([0,len(original)])
def plotCompared(original,forecasts,labels,title):
fig = plt.figure(figsize=[13,6])
ax = fig.add_subplot(111)
ax.plot(original,color='k',label="Original")
for c in range(0,len(forecasted)):
ax.plot(forecasted[c],label=labels[c])
handles0, labels0 = ax.get_legend_handles_labels()
ax.legend(handles0,labels0)
ax.set_title(title)
ax.set_ylabel('F(T)')
ax.set_xlabel('T')
ax.set_xlim([0,len(original)])
ax.set_ylim([min(original),max(original)])
def SelecaoKFold_MenorRMSE(original,parameters,modelo):
nfolds = 5
ret = []
errors = np.array([[0 for k in parameters] for z in np.arange(0,nfolds)])
forecasted_best = []
print("Série Original")
fig = plt.figure(figsize=[18,10])
fig.suptitle("Comparação de modelos ")
ax0 = fig.add_axes([0, 0.5, 0.65, 0.45]) #left, bottom, width, height
ax0.set_xlim([0,len(original)])
ax0.set_ylim([min(original),max(original)])
ax0.set_title('Série Temporal')
ax0.set_ylabel('F(T)')
ax0.set_xlabel('T')
ax0.plot(original,label="Original")
min_rmse_fold = 100000.0
best = None
fc = 0 #Fold count
kf = KFold(len(original), n_folds=nfolds)
for train_ix, test_ix in kf:
train = original[train_ix]
test = original[test_ix]
min_rmse = 100000.0
best_fold = None
forecasted_best_fold = []
errors_fold = []
pc = 0 #Parameter count
for p in parameters:
sets = Grid.GridPartitionerTrimf(train,p)
fts = modelo(str(p)+ " particoes")
fts.train(train,sets)
forecasted = [fts.forecast(xx) for xx in test]
error = Measures.rmse(np.array(forecasted),np.array(test))
errors_fold.append(error)
print(fc, p, error)
errors[fc,pc] = error
if error < min_rmse:
min_rmse = error
best_fold = fts
forecasted_best_fold = forecasted
pc = pc + 1
forecasted_best_fold = [best_fold.forecast(xx) for xx in original]
ax0.plot(forecasted_best_fold,label=best_fold.name)
if np.mean(errors_fold) < min_rmse_fold:
min_rmse_fold = np.mean(errors)
best = best_fold
forecasted_best = forecasted_best_fold
fc = fc + 1
handles0, labels0 = ax0.get_legend_handles_labels()
ax0.legend(handles0, labels0)
ax1 = Axes3D(fig, rect=[0.7, 0.5, 0.3, 0.45], elev=30, azim=144)
#ax1 = fig.add_axes([0.6, 0.0, 0.45, 0.45], projection='3d')
ax1.set_title('Comparação dos Erros Quadráticos Médios')
ax1.set_zlabel('RMSE')
ax1.set_xlabel('K-fold')
ax1.set_ylabel('Partições')
X,Y = np.meshgrid(np.arange(0,nfolds),parameters)
surf = ax1.plot_surface(X, Y, errors.T, rstride=1, cstride=1, antialiased=True)
ret.append(best)
ret.append(forecasted_best)
# Modelo diferencial
print("\nSérie Diferencial")
errors = np.array([[0 for k in parameters] for z in np.arange(0,nfolds)])
forecastedd_best = []
ax2 = fig.add_axes([0, 0, 0.65, 0.45]) #left, bottom, width, height
ax2.set_xlim([0,len(original)])
ax2.set_ylim([min(original),max(original)])
ax2.set_title('Série Temporal')
ax2.set_ylabel('F(T)')
ax2.set_xlabel('T')
ax2.plot(original,label="Original")
min_rmse = 100000.0
min_rmse_fold = 100000.0
bestd = None
fc = 0
diff = Transformations.differential(original)
kf = KFold(len(original), n_folds=nfolds)
for train_ix, test_ix in kf:
train = diff[train_ix]
test = diff[test_ix]
min_rmse = 100000.0
best_fold = None
forecasted_best_fold = []
errors_fold = []
pc = 0
for p in parameters:
sets = Grid.GridPartitionerTrimf(train,p)
fts = modelo(str(p)+ " particoes")
fts.train(train,sets)
forecasted = [fts.forecastDiff(test,xx) for xx in np.arange(len(test))]
error = Measures.rmse(np.array(forecasted),np.array(test))
print(fc, p,error)
errors[fc,pc] = error
errors_fold.append(error)
if error < min_rmse:
min_rmse = error
best_fold = fts
pc = pc + 1
forecasted_best_fold = [best_fold.forecastDiff(original, xx) for xx in np.arange(len(original))]
ax2.plot(forecasted_best_fold,label=best_fold.name)
if np.mean(errors_fold) < min_rmse_fold:
min_rmse_fold = np.mean(errors)
best = best_fold
forecasted_best = forecasted_best_fold
fc = fc + 1
handles0, labels0 = ax2.get_legend_handles_labels()
ax2.legend(handles0, labels0)
ax3 = Axes3D(fig, rect=[0.7, 0, 0.3, 0.45], elev=30, azim=144)
#ax1 = fig.add_axes([0.6, 0.0, 0.45, 0.45], projection='3d')
ax3.set_title('Comparação dos Erros Quadráticos Médios')
ax3.set_zlabel('RMSE')
ax3.set_xlabel('K-fold')
ax3.set_ylabel('Partições')
X,Y = np.meshgrid(np.arange(0,nfolds),parameters)
surf = ax3.plot_surface(X, Y, errors.T, rstride=1, cstride=1, antialiased=True)
ret.append(best)
ret.append(forecasted_best)
return ret
def SelecaoSimples_MenorRMSE(original,parameters,modelo):
ret = []
errors = []
forecasted_best = []
print("Série Original")
fig = plt.figure(figsize=[20,12])
fig.suptitle("Comparação de modelos ")
ax0 = fig.add_axes([0, 0.5, 0.65, 0.45]) #left, bottom, width, height
ax0.set_xlim([0,len(original)])
ax0.set_ylim([min(original),max(original)])
ax0.set_title('Série Temporal')
ax0.set_ylabel('F(T)')
ax0.set_xlabel('T')
ax0.plot(original,label="Original")
min_rmse = 100000.0
best = None
for p in parameters:
sets = Grid.GridPartitionerTrimf(original,p)
fts = modelo(str(p)+ " particoes")
fts.train(original,sets)
#print(original)
forecasted = fts.forecast(original)
forecasted.insert(0,original[0])
#print(forecasted)
ax0.plot(forecasted,label=fts.name)
error = Measures.rmse(np.array(forecasted),np.array(original))
print(p,error)
errors.append(error)
if error < min_rmse:
min_rmse = error
best = fts
forecasted_best = forecasted
handles0, labels0 = ax0.get_legend_handles_labels()
ax0.legend(handles0, labels0)
ax1 = fig.add_axes([0.7, 0.5, 0.3, 0.45]) #left, bottom, width, height
ax1.set_title('Comparação dos Erros Quadráticos Médios')
ax1.set_ylabel('RMSE')
ax1.set_xlabel('Quantidade de Partições')
ax1.set_xlim([min(parameters),max(parameters)])
ax1.plot(parameters,errors)
ret.append(best)
ret.append(forecasted_best)
# Modelo diferencial
print("\nSérie Diferencial")
difffts = Transformations.differential(original)
errors = []
forecastedd_best = []
ax2 = fig.add_axes([0, 0, 0.65, 0.45]) #left, bottom, width, height
ax2.set_xlim([0,len(difffts)])
ax2.set_ylim([min(difffts),max(difffts)])
ax2.set_title('Série Temporal')
ax2.set_ylabel('F(T)')
ax2.set_xlabel('T')
ax2.plot(difffts,label="Original")
min_rmse = 100000.0
bestd = None
for p in parameters:
sets = Grid.GridPartitionerTrimf(difffts,p)
fts = modelo(str(p)+ " particoes")
fts.train(difffts,sets)
forecasted = fts.forecast(difffts)
forecasted.insert(0,difffts[0])
ax2.plot(forecasted,label=fts.name)
error = Measures.rmse(np.array(forecasted),np.array(difffts))
print(p,error)
errors.append(error)
if error < min_rmse:
min_rmse = error
bestd = fts
forecastedd_best = forecasted
handles0, labels0 = ax2.get_legend_handles_labels()
ax2.legend(handles0, labels0)
ax3 = fig.add_axes([0.7, 0, 0.3, 0.45]) #left, bottom, width, height
ax3.set_title('Comparação dos Erros Quadráticos Médios')
ax3.set_ylabel('RMSE')
ax3.set_xlabel('Quantidade de Partições')
ax3.set_xlim([min(parameters),max(parameters)])
ax3.plot(parameters,errors)
ret.append(bestd)
ret.append(forecastedd_best)
return ret
def compareModelsPlot(original,models_fo,models_ho):
fig = plt.figure(figsize=[13,6])
fig.suptitle("Comparação de modelos ")
ax0 = fig.add_axes([0, 0, 1, 1]) #left, bottom, width, height
rows = []
for model in models_fo:
fts = model["model"]
ax0.plot(model["forecasted"], label=model["name"])
for model in models_ho:
fts = model["model"]
ax0.plot(model["forecasted"], label=model["name"])
handles0, labels0 = ax0.get_legend_handles_labels()
ax0.legend(handles0, labels0)
def compareModelsTable(original,models_fo,models_ho):
fig = plt.figure(figsize=[12,4])
fig.suptitle("Comparação de modelos ")
columns = ['Modelo','Ordem','Partições','RMSE','MAPE (%)']
rows = []
for model in models_fo:
fts = model["model"]
error_r = Measures.rmse(model["forecasted"],original)
error_m = round(Measures.mape(model["forecasted"],original)*100,2)
rows.append([model["name"],fts.order,len(fts.sets),error_r,error_m])
for model in models_ho:
fts = model["model"]
error_r = Measures.rmse(model["forecasted"][fts.order:],original[fts.order:])
error_m = round(Measures.mape(model["forecasted"][fts.order:],original[fts.order:])*100,2)
rows.append([model["name"],fts.order,len(fts.sets),error_r,error_m])
ax1 = fig.add_axes([0, 0, 1, 1]) #left, bottom, width, height
ax1.set_xticks([])
ax1.set_yticks([])
ax1.table(cellText=rows,
colLabels=columns,
cellLoc='center',
bbox=[0,0,1,1])
sup = "\\begin{tabular}{"
header = ""
body = ""
footer = ""
for c in columns:
sup = sup + "|c"
if len(header) > 0:
header = header + " & "
header = header + "\\textbf{" + c + "} "
sup = sup + "|} \\hline\n"
header = header + "\\\\ \\hline \n"
for r in rows:
lin = ""
for c in r:
if len(lin) > 0:
lin = lin + " & "
lin = lin + str(c)
body = body + lin + "\\\\ \\hline \n"
return sup + header + body + "\\end{tabular}"
from pyFTS import hwang
def HOSelecaoSimples_MenorRMSE(original,parameters,orders):
ret = []
errors = np.array([[0 for k in range(len(parameters))] for kk in range(len(orders))])
forecasted_best = []
print("Série Original")
fig = plt.figure(figsize=[20,12])
fig.suptitle("Comparação de modelos ")
ax0 = fig.add_axes([0, 0.5, 0.6, 0.45]) #left, bottom, width, height
ax0.set_xlim([0,len(original)])
ax0.set_ylim([min(original),max(original)])
ax0.set_title('Série Temporal')
ax0.set_ylabel('F(T)')
ax0.set_xlabel('T')
ax0.plot(original,label="Original")
min_rmse = 100000.0
best = None
pc = 0
for p in parameters:
oc = 0
for o in orders:
sets = Grid.GridPartitionerTrimf(original,p)
fts = hwang.HighOrderFTS(o,"k = " + str(p)+ " w = " + str(o))
fts.train(original,sets)
forecasted = [fts.forecast(original, xx) for xx in range(o,len(original))]
error = Measures.rmse(np.array(forecasted),np.array(original[o:]))
for kk in range(o):
forecasted.insert(0,None)
ax0.plot(forecasted,label=fts.name)
print(o,p,error)
errors[oc,pc] = error
if error < min_rmse:
min_rmse = error
best = fts
forecasted_best = forecasted
oc = oc + 1
pc = pc + 1
handles0, labels0 = ax0.get_legend_handles_labels()
ax0.legend(handles0, labels0)
ax1 = Axes3D(fig, rect=[0.6, 0.5, 0.45, 0.45], elev=30, azim=144)
#ax1 = fig.add_axes([0.6, 0.5, 0.45, 0.45], projection='3d')
ax1.set_title('Comparação dos Erros Quadráticos Médios por tamanho da janela')
ax1.set_ylabel('RMSE')
ax1.set_xlabel('Quantidade de Partições')
ax1.set_zlabel('W')
X,Y = np.meshgrid(parameters,orders)
surf = ax1.plot_surface(X, Y, errors, rstride=1, cstride=1, antialiased=True)
ret.append(best)
ret.append(forecasted_best)
# Modelo diferencial
print("\nSérie Diferencial")
errors = np.array([[0 for k in range(len(parameters))] for kk in range(len(orders))])
forecastedd_best = []
ax2 = fig.add_axes([0, 0, 0.6, 0.45]) #left, bottom, width, height
ax2.set_xlim([0,len(original)])
ax2.set_ylim([min(original),max(original)])
ax2.set_title('Série Temporal')
ax2.set_ylabel('F(T)')
ax2.set_xlabel('T')
ax2.plot(original,label="Original")
min_rmse = 100000.0
bestd = None
pc = 0
for p in parameters:
oc = 0
for o in orders:
sets = Grid.GridPartitionerTrimf(Transformations.differential(original),p)
fts = hwang.HighOrderFTS(o,"k = " + str(p)+ " w = " + str(o))
fts.train(original,sets)
forecasted = [fts.forecastDiff(original, xx) for xx in range(o,len(original))]
error = Measures.rmse(np.array(forecasted),np.array(original[o:]))
for kk in range(o):
forecasted.insert(0,None)
ax2.plot(forecasted,label=fts.name)
print(o,p,error)
errors[oc,pc] = error
if error < min_rmse:
min_rmse = error
bestd = fts
forecastedd_best = forecasted
oc = oc + 1
pc = pc + 1
handles0, labels0 = ax2.get_legend_handles_labels()
ax2.legend(handles0, labels0)
ax3 = Axes3D(fig, rect=[0.6, 0.0, 0.45, 0.45], elev=30, azim=144)
#ax3 = fig.add_axes([0.6, 0.0, 0.45, 0.45], projection='3d')
ax3.set_title('Comparação dos Erros Quadráticos Médios')
ax3.set_ylabel('RMSE')
ax3.set_xlabel('Quantidade de Partições')
ax3.set_zlabel('W')
X,Y = np.meshgrid(parameters,orders)
surf = ax3.plot_surface(X, Y, errors, rstride=1, cstride=1, antialiased=True)
ret.append(bestd)
ret.append(forecastedd_best)
return ret