48 lines
1.2 KiB
Python
48 lines
1.2 KiB
Python
import unittest
|
|
from pyFTS.common.transformations.som import SOMTransformation
|
|
import pandas as pd
|
|
import os
|
|
|
|
class MyTestCase(unittest.TestCase):
|
|
def test_apply(self):
|
|
self.assertEqual(True, False)
|
|
|
|
def test_save_net(self):
|
|
som_transformer = self.som_transformer_trained()
|
|
|
|
filename = 'test_net.npy'
|
|
som_transformer.save_net(filename)
|
|
files = os.listdir()
|
|
|
|
if filename in files:
|
|
is_in_files = True
|
|
os.remove(filename)
|
|
else:
|
|
is_in_files = False
|
|
|
|
self.assertEqual(True, is_in_files)
|
|
|
|
def test_train(self):
|
|
self.assertEqual()
|
|
|
|
@staticmethod
|
|
def simple_dataset():
|
|
data = [
|
|
[1, 1, 1, 1, 1],
|
|
[1, 1, 1, 1, 0],
|
|
[1, 1, 1, 0, 0],
|
|
[1, 1, 0, 0, 0],
|
|
[1, 0, 0, 0, 0],
|
|
]
|
|
df = pd.DataFrame(data)
|
|
return df
|
|
|
|
def som_transformer_trained(self):
|
|
data = self.simple_dataset()
|
|
som_transformer = SOMTransformation(grid_dimension=(2, 2))
|
|
som_transformer.train(data=data, epochs=100)
|
|
return som_transformer
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|