pyFTS/docs/build/html/pyFTS.models.multivariate.html
2019-09-23 23:16:06 -03:00

982 lines
59 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="X-UA-Compatible" content="IE=Edge" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /><script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-55120145-3']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
<title>pyFTS.models.multivariate package &#8212; pyFTS 1.6 documentation</title>
<link rel="stylesheet" href="_static/bizstyle.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<script type="text/javascript" src="_static/documentation_options.js"></script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/bizstyle.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="pyFTS.models.nonstationary package" href="pyFTS.models.nonstationary.html" />
<link rel="prev" title="pyFTS.models.incremental package" href="pyFTS.models.incremental.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0">
<!--[if lt IE 9]>
<script type="text/javascript" src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="pyFTS.models.nonstationary.html" title="pyFTS.models.nonstationary package"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="pyFTS.models.incremental.html" title="pyFTS.models.incremental package"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.6 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="pyFTS.html" >pyFTS package</a> &#187;</li>
<li class="nav-item nav-item-3"><a href="pyFTS.models.html" accesskey="U">pyFTS.models package</a> &#187;</li>
</ul>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<p class="logo"><a href="index.html">
<img class="logo" src="_static/logo_heading2.png" alt="Logo"/>
</a></p>
<h3><a href="index.html">Table Of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">pyFTS.models.multivariate package</a><ul>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate">Module contents</a></li>
<li><a class="reference internal" href="#submodules">Submodules</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.FLR">pyFTS.models.multivariate.FLR module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.common">pyFTS.models.multivariate.common module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.variable">pyFTS.models.multivariate.variable module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.flrg">pyFTS.models.multivariate.flrg module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.partitioner">pyFTS.models.multivariate.partitioner module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.grid">pyFTS.models.multivariate.grid module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.mvfts">pyFTS.models.multivariate.mvfts module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.wmvfts">pyFTS.models.multivariate.wmvfts module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.cmvfts">pyFTS.models.multivariate.cmvfts module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.multivariate.granular">pyFTS.models.multivariate.granular module</a></li>
</ul>
</li>
</ul>
<h4>Previous topic</h4>
<p class="topless"><a href="pyFTS.models.incremental.html"
title="previous chapter">pyFTS.models.incremental package</a></p>
<h4>Next topic</h4>
<p class="topless"><a href="pyFTS.models.nonstationary.html"
title="next chapter">pyFTS.models.nonstationary package</a></p>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/pyFTS.models.multivariate.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3>Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" />
<input type="submit" value="Go" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="pyfts-models-multivariate-package">
<h1>pyFTS.models.multivariate package<a class="headerlink" href="#pyfts-models-multivariate-package" title="Permalink to this headline"></a></h1>
<div class="section" id="module-pyFTS.models.multivariate">
<span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-pyFTS.models.multivariate" title="Permalink to this headline"></a></h2>
<p>Multivariate Fuzzy Time Series methods</p>
</div>
<div class="section" id="submodules">
<h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this headline"></a></h2>
</div>
<div class="section" id="module-pyFTS.models.multivariate.FLR">
<span id="pyfts-models-multivariate-flr-module"></span><h2>pyFTS.models.multivariate.FLR module<a class="headerlink" href="#module-pyFTS.models.multivariate.FLR" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="pyFTS.models.multivariate.FLR.FLR">
<em class="property">class </em><code class="descclassname">pyFTS.models.multivariate.FLR.</code><code class="descname">FLR</code><a class="headerlink" href="#pyFTS.models.multivariate.FLR.FLR" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.7)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Multivariate Fuzzy Logical Relationship</p>
<dl class="method">
<dt id="pyFTS.models.multivariate.FLR.FLR.set_lhs">
<code class="descname">set_lhs</code><span class="sig-paren">(</span><em>var</em>, <em>set</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.FLR.FLR.set_lhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.FLR.FLR.set_rhs">
<code class="descname">set_rhs</code><span class="sig-paren">(</span><em>set</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.FLR.FLR.set_rhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.multivariate.common">
<span id="pyfts-models-multivariate-common-module"></span><h2>pyFTS.models.multivariate.common module<a class="headerlink" href="#module-pyFTS.models.multivariate.common" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="pyFTS.models.multivariate.common.MultivariateFuzzySet">
<em class="property">class </em><code class="descclassname">pyFTS.models.multivariate.common.</code><code class="descname">MultivariateFuzzySet</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.common.MultivariateFuzzySet" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.common.html#pyFTS.common.Composite.FuzzySet" title="pyFTS.common.Composite.FuzzySet"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.Composite.FuzzySet</span></code></a></p>
<p>Multivariate Composite Fuzzy Set</p>
<dl class="method">
<dt id="pyFTS.models.multivariate.common.MultivariateFuzzySet.append_set">
<code class="descname">append_set</code><span class="sig-paren">(</span><em>variable</em>, <em>set</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.common.MultivariateFuzzySet.append_set" title="Permalink to this definition"></a></dt>
<dd><p>Appends a new fuzzy set from a new variable</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>variable</strong> an multivariate.variable instance</li>
<li><strong>set</strong> an common.FuzzySet instance</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.common.MultivariateFuzzySet.membership">
<code class="descname">membership</code><span class="sig-paren">(</span><em>x</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.common.MultivariateFuzzySet.membership" title="Permalink to this definition"></a></dt>
<dd><p>Calculate the membership value of a given input</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>x</strong> input value</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">membership value of x at this fuzzy set</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.common.MultivariateFuzzySet.set_target_variable">
<code class="descname">set_target_variable</code><span class="sig-paren">(</span><em>variable</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.common.MultivariateFuzzySet.set_target_variable" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="function">
<dt id="pyFTS.models.multivariate.common.fuzzyfy_instance">
<code class="descclassname">pyFTS.models.multivariate.common.</code><code class="descname">fuzzyfy_instance</code><span class="sig-paren">(</span><em>data_point</em>, <em>var</em>, <em>tuples=True</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.common.fuzzyfy_instance" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="function">
<dt id="pyFTS.models.multivariate.common.fuzzyfy_instance_clustered">
<code class="descclassname">pyFTS.models.multivariate.common.</code><code class="descname">fuzzyfy_instance_clustered</code><span class="sig-paren">(</span><em>data_point</em>, <em>cluster</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.common.fuzzyfy_instance_clustered" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</div>
<div class="section" id="module-pyFTS.models.multivariate.variable">
<span id="pyfts-models-multivariate-variable-module"></span><h2>pyFTS.models.multivariate.variable module<a class="headerlink" href="#module-pyFTS.models.multivariate.variable" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="pyFTS.models.multivariate.variable.Variable">
<em class="property">class </em><code class="descclassname">pyFTS.models.multivariate.variable.</code><code class="descname">Variable</code><span class="sig-paren">(</span><em>name</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.7)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>A variable of a fuzzy time series multivariate model. Each variable contains its own
transformations and partitioners.</p>
<dl class="method">
<dt id="pyFTS.models.multivariate.variable.Variable.apply_inverse_transformations">
<code class="descname">apply_inverse_transformations</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable.apply_inverse_transformations" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.variable.Variable.apply_transformations">
<code class="descname">apply_transformations</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable.apply_transformations" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.variable.Variable.build">
<code class="descname">build</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.variable.Variable.build" title="Permalink to this definition"></a></dt>
<dd><table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>kwargs</strong> </td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.multivariate.flrg">
<span id="pyfts-models-multivariate-flrg-module"></span><h2>pyFTS.models.multivariate.flrg module<a class="headerlink" href="#module-pyFTS.models.multivariate.flrg" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="pyFTS.models.multivariate.flrg.FLRG">
<em class="property">class </em><code class="descclassname">pyFTS.models.multivariate.flrg.</code><code class="descname">FLRG</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.flrg.FLRG" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.common.html#pyFTS.common.flrg.FLRG" title="pyFTS.common.flrg.FLRG"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.flrg.FLRG</span></code></a></p>
<p>Multivariate Fuzzy Logical Rule Group</p>
<dl class="method">
<dt id="pyFTS.models.multivariate.flrg.FLRG.append_rhs">
<code class="descname">append_rhs</code><span class="sig-paren">(</span><em>fset</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.flrg.FLRG.append_rhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.flrg.FLRG.get_lower">
<code class="descname">get_lower</code><span class="sig-paren">(</span><em>sets</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.flrg.FLRG.get_lower" title="Permalink to this definition"></a></dt>
<dd><p>Returns the lower bound value for the RHS fuzzy sets</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>sets</strong> fuzzy sets</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">lower bound value</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.flrg.FLRG.get_membership">
<code class="descname">get_membership</code><span class="sig-paren">(</span><em>data</em>, <em>variables</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.flrg.FLRG.get_membership" title="Permalink to this definition"></a></dt>
<dd><p>Returns the membership value of the FLRG for the input data</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> input data</li>
<li><strong>sets</strong> fuzzy sets</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">the membership value</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.flrg.FLRG.get_upper">
<code class="descname">get_upper</code><span class="sig-paren">(</span><em>sets</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.flrg.FLRG.get_upper" title="Permalink to this definition"></a></dt>
<dd><p>Returns the upper bound value for the RHS fuzzy sets</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>sets</strong> fuzzy sets</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">upper bound value</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.flrg.FLRG.set_lhs">
<code class="descname">set_lhs</code><span class="sig-paren">(</span><em>var</em>, <em>fset</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.flrg.FLRG.set_lhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.multivariate.partitioner">
<span id="pyfts-models-multivariate-partitioner-module"></span><h2>pyFTS.models.multivariate.partitioner module<a class="headerlink" href="#module-pyFTS.models.multivariate.partitioner" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="pyFTS.models.multivariate.partitioner.MultivariatePartitioner">
<em class="property">class </em><code class="descclassname">pyFTS.models.multivariate.partitioner.</code><code class="descname">MultivariatePartitioner</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.partitioners.html#pyFTS.partitioners.partitioner.Partitioner" title="pyFTS.partitioners.partitioner.Partitioner"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.partitioners.partitioner.Partitioner</span></code></a></p>
<p>Base class for partitioners which use the MultivariateFuzzySet</p>
<dl class="method">
<dt id="pyFTS.models.multivariate.partitioner.MultivariatePartitioner.append">
<code class="descname">append</code><span class="sig-paren">(</span><em>fset</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner.append" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.partitioner.MultivariatePartitioner.build">
<code class="descname">build</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner.build" title="Permalink to this definition"></a></dt>
<dd><p>Perform the partitioning of the Universe of Discourse</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>data</strong> training data</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.partitioner.MultivariatePartitioner.build_index">
<code class="descname">build_index</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner.build_index" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.partitioner.MultivariatePartitioner.change_target_variable">
<code class="descname">change_target_variable</code><span class="sig-paren">(</span><em>variable</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner.change_target_variable" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.partitioner.MultivariatePartitioner.format_data">
<code class="descname">format_data</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner.format_data" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.partitioner.MultivariatePartitioner.fuzzyfy">
<code class="descname">fuzzyfy</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner.fuzzyfy" title="Permalink to this definition"></a></dt>
<dd><p>Fuzzyfy the input data according to this partitioner fuzzy sets.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>data</strong> input value to be fuzzyfied</li>
<li><strong>alpha_cut</strong> the minimal membership value to be considered on fuzzyfication (only for mode=sets)</li>
<li><strong>method</strong> the fuzzyfication method (fuzzy: all fuzzy memberships, maximum: only the maximum membership)</li>
<li><strong>mode</strong> the fuzzyfication mode (sets: return the fuzzy sets names, vector: return a vector with the membership</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>values for all fuzzy sets, both: return a list with tuples (fuzzy set, membership value) )</p>
<p>:returns a list with the fuzzyfied values, depending on the mode</p>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.partitioner.MultivariatePartitioner.prune">
<code class="descname">prune</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner.prune" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.partitioner.MultivariatePartitioner.search">
<code class="descname">search</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner.search" title="Permalink to this definition"></a></dt>
<dd><p>Perform a search for the nearest fuzzy sets of the point data. This function were designed to work with several
overlapped fuzzy sets.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> the value to search for the nearest fuzzy sets</li>
<li><strong>type</strong> the return type: index for the fuzzy set indexes or name for fuzzy set names.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the nearest fuzzy sets</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.multivariate.grid">
<span id="pyfts-models-multivariate-grid-module"></span><h2>pyFTS.models.multivariate.grid module<a class="headerlink" href="#module-pyFTS.models.multivariate.grid" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="pyFTS.models.multivariate.grid.GridCluster">
<em class="property">class </em><code class="descclassname">pyFTS.models.multivariate.grid.</code><code class="descname">GridCluster</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.grid.GridCluster" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner" title="pyFTS.models.multivariate.partitioner.MultivariatePartitioner"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.multivariate.partitioner.MultivariatePartitioner</span></code></a></p>
<p>A cartesian product of all fuzzy sets of all variables</p>
<dl class="method">
<dt id="pyFTS.models.multivariate.grid.GridCluster.build">
<code class="descname">build</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.grid.GridCluster.build" title="Permalink to this definition"></a></dt>
<dd><p>Perform the partitioning of the Universe of Discourse</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>data</strong> training data</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.grid.GridCluster.defuzzyfy">
<code class="descname">defuzzyfy</code><span class="sig-paren">(</span><em>values</em>, <em>mode='both'</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.grid.GridCluster.defuzzyfy" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="class">
<dt id="pyFTS.models.multivariate.grid.IncrementalGridCluster">
<em class="property">class </em><code class="descclassname">pyFTS.models.multivariate.grid.</code><code class="descname">IncrementalGridCluster</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.grid.IncrementalGridCluster" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.multivariate.partitioner.MultivariatePartitioner" title="pyFTS.models.multivariate.partitioner.MultivariatePartitioner"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.multivariate.partitioner.MultivariatePartitioner</span></code></a></p>
<p>Create combinations of fuzzy sets of the variables on demand, incrementally increasing the
multivariate fuzzy set base.</p>
<dl class="method">
<dt id="pyFTS.models.multivariate.grid.IncrementalGridCluster.fuzzyfy">
<code class="descname">fuzzyfy</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.grid.IncrementalGridCluster.fuzzyfy" title="Permalink to this definition"></a></dt>
<dd><p>Fuzzyfy the input data according to this partitioner fuzzy sets.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>data</strong> input value to be fuzzyfied</li>
<li><strong>alpha_cut</strong> the minimal membership value to be considered on fuzzyfication (only for mode=sets)</li>
<li><strong>method</strong> the fuzzyfication method (fuzzy: all fuzzy memberships, maximum: only the maximum membership)</li>
<li><strong>mode</strong> the fuzzyfication mode (sets: return the fuzzy sets names, vector: return a vector with the membership</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>values for all fuzzy sets, both: return a list with tuples (fuzzy set, membership value) )</p>
<p>:returns a list with the fuzzyfied values, depending on the mode</p>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.grid.IncrementalGridCluster.incremental_search">
<code class="descname">incremental_search</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.grid.IncrementalGridCluster.incremental_search" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.grid.IncrementalGridCluster.prune">
<code class="descname">prune</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.grid.IncrementalGridCluster.prune" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.multivariate.mvfts">
<span id="pyfts-models-multivariate-mvfts-module"></span><h2>pyFTS.models.multivariate.mvfts module<a class="headerlink" href="#module-pyFTS.models.multivariate.mvfts" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="pyFTS.models.multivariate.mvfts.MVFTS">
<em class="property">class </em><code class="descclassname">pyFTS.models.multivariate.mvfts.</code><code class="descname">MVFTS</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.common.html#pyFTS.common.fts.FTS" title="pyFTS.common.fts.FTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.fts.FTS</span></code></a></p>
<p>Multivariate extension of Chens ConventionalFTS method</p>
<dl class="method">
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.append_variable">
<code class="descname">append_variable</code><span class="sig-paren">(</span><em>var</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.append_variable" title="Permalink to this definition"></a></dt>
<dd><p>Append a new endogenous variable to the model</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>var</strong> variable object</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.apply_transformations">
<code class="descname">apply_transformations</code><span class="sig-paren">(</span><em>data</em>, <em>params=None</em>, <em>updateUoD=False</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.apply_transformations" title="Permalink to this definition"></a></dt>
<dd><p>Apply the data transformations for data preprocessing</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> input data</li>
<li><strong>params</strong> transformation parameters</li>
<li><strong>updateUoD</strong> </li>
<li><strong>kwargs</strong> </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">preprocessed data</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.clone_parameters">
<code class="descname">clone_parameters</code><span class="sig-paren">(</span><em>model</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.clone_parameters" title="Permalink to this definition"></a></dt>
<dd><p>Import the parameters values from other model</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>model</strong> </td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.forecast">
<code class="descname">forecast</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.forecast" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast one step ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</li>
<li><strong>kwargs</strong> model specific parameters</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted values</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead">
<code class="descname">forecast_ahead</code><span class="sig-paren">(</span><em>data</em>, <em>steps</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast n steps ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</li>
<li><strong>steps</strong> the number of steps ahead to forecast (default: 1)</li>
<li><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted values</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead_interval">
<code class="descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em>data</em>, <em>steps</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.forecast_ahead_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast n steps ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</li>
<li><strong>steps</strong> the number of steps ahead to forecast</li>
<li><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted intervals</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.forecast_interval">
<code class="descname">forecast_interval</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.forecast_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast one step ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</li>
<li><strong>kwargs</strong> model specific parameters</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the prediction intervals</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.format_data">
<code class="descname">format_data</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.format_data" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.generate_flrg">
<code class="descname">generate_flrg</code><span class="sig-paren">(</span><em>flrs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.generate_flrg" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.generate_flrs">
<code class="descname">generate_flrs</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.generate_flrs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.generate_lhs_flrs">
<code class="descname">generate_lhs_flrs</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.generate_lhs_flrs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.mvfts.MVFTS.train">
<code class="descname">train</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.MVFTS.train" title="Permalink to this definition"></a></dt>
<dd><p>Method specific parameter fitting</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>data</strong> training time series data</li>
<li><strong>kwargs</strong> Method specific parameters</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
<dl class="function">
<dt id="pyFTS.models.multivariate.mvfts.product_dict">
<code class="descclassname">pyFTS.models.multivariate.mvfts.</code><code class="descname">product_dict</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.mvfts.product_dict" title="Permalink to this definition"></a></dt>
<dd><p>Code by Seth Johnson
:param kwargs:
:return:</p>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.multivariate.wmvfts">
<span id="pyfts-models-multivariate-wmvfts-module"></span><h2>pyFTS.models.multivariate.wmvfts module<a class="headerlink" href="#module-pyFTS.models.multivariate.wmvfts" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="pyFTS.models.multivariate.wmvfts.WeightedFLRG">
<em class="property">class </em><code class="descclassname">pyFTS.models.multivariate.wmvfts.</code><code class="descname">WeightedFLRG</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedFLRG" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.multivariate.flrg.FLRG" title="pyFTS.models.multivariate.flrg.FLRG"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.multivariate.flrg.FLRG</span></code></a></p>
<p>Weighted Multivariate Fuzzy Logical Rule Group</p>
<dl class="method">
<dt id="pyFTS.models.multivariate.wmvfts.WeightedFLRG.append_rhs">
<code class="descname">append_rhs</code><span class="sig-paren">(</span><em>fset</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedFLRG.append_rhs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_lower">
<code class="descname">get_lower</code><span class="sig-paren">(</span><em>sets</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_lower" title="Permalink to this definition"></a></dt>
<dd><p>Returns the lower bound value for the RHS fuzzy sets</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>sets</strong> fuzzy sets</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">lower bound value</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_midpoint">
<code class="descname">get_midpoint</code><span class="sig-paren">(</span><em>sets</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_midpoint" title="Permalink to this definition"></a></dt>
<dd><p>Returns the midpoint value for the RHS fuzzy sets</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>sets</strong> fuzzy sets</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">the midpoint value</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_upper">
<code class="descname">get_upper</code><span class="sig-paren">(</span><em>sets</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedFLRG.get_upper" title="Permalink to this definition"></a></dt>
<dd><p>Returns the upper bound value for the RHS fuzzy sets</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>sets</strong> fuzzy sets</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">upper bound value</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.wmvfts.WeightedFLRG.weights">
<code class="descname">weights</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedFLRG.weights" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
<dl class="class">
<dt id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS">
<em class="property">class </em><code class="descclassname">pyFTS.models.multivariate.wmvfts.</code><code class="descname">WeightedMVFTS</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.multivariate.mvfts.MVFTS" title="pyFTS.models.multivariate.mvfts.MVFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.multivariate.mvfts.MVFTS</span></code></a></p>
<p>Weighted Multivariate FTS</p>
<dl class="method">
<dt id="pyFTS.models.multivariate.wmvfts.WeightedMVFTS.generate_flrg">
<code class="descname">generate_flrg</code><span class="sig-paren">(</span><em>flrs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.wmvfts.WeightedMVFTS.generate_flrg" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.multivariate.cmvfts">
<span id="pyfts-models-multivariate-cmvfts-module"></span><h2>pyFTS.models.multivariate.cmvfts module<a class="headerlink" href="#module-pyFTS.models.multivariate.cmvfts" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS">
<em class="property">class </em><code class="descclassname">pyFTS.models.multivariate.cmvfts.</code><code class="descname">ClusteredMVFTS</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.multivariate.mvfts.MVFTS" title="pyFTS.models.multivariate.mvfts.MVFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.multivariate.mvfts.MVFTS</span></code></a></p>
<p>Meta model for high order, clustered multivariate FTS</p>
<dl class="method">
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.check_data">
<code class="descname">check_data</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.check_data" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast">
<code class="descname">forecast</code><span class="sig-paren">(</span><em>ndata</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast one step ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</li>
<li><strong>kwargs</strong> model specific parameters</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted values</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_distribution">
<code class="descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em>data</em>, <em>steps</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast n steps ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</li>
<li><strong>steps</strong> the number of steps ahead to forecast</li>
<li><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the forecasted Probability Distributions</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_multivariate">
<code class="descname">forecast_ahead_multivariate</code><span class="sig-paren">(</span><em>data</em>, <em>steps</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_ahead_multivariate" title="Permalink to this definition"></a></dt>
<dd><p>Multivariate forecast n step ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> Pandas dataframe with one column for each variable and with the minimal length equal to the max_lag of the model</li>
<li><strong>steps</strong> the number of steps ahead to forecast</li>
<li><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a Pandas Dataframe object representing the forecasted values for each variable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_distribution">
<code class="descname">forecast_distribution</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast one step ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</li>
<li><strong>kwargs</strong> model specific parameters</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_interval">
<code class="descname">forecast_interval</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast one step ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</li>
<li><strong>kwargs</strong> model specific parameters</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a list with the prediction intervals</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_multivariate">
<code class="descname">forecast_multivariate</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.forecast_multivariate" title="Permalink to this definition"></a></dt>
<dd><p>Multivariate forecast one step ahead</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>data</strong> Pandas dataframe with one column for each variable and with the minimal length equal to the max_lag of the model</li>
<li><strong>kwargs</strong> model specific parameters</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">a Pandas Dataframe object representing the forecasted values for each variable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.fuzzyfy">
<code class="descname">fuzzyfy</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.fuzzyfy" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.train">
<code class="descname">train</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS.train" title="Permalink to this definition"></a></dt>
<dd><p>Method specific parameter fitting</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>data</strong> training time series data</li>
<li><strong>kwargs</strong> Method specific parameters</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.multivariate.granular">
<span id="pyfts-models-multivariate-granular-module"></span><h2>pyFTS.models.multivariate.granular module<a class="headerlink" href="#module-pyFTS.models.multivariate.granular" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="pyFTS.models.multivariate.granular.GranularWMVFTS">
<em class="property">class </em><code class="descclassname">pyFTS.models.multivariate.granular.</code><code class="descname">GranularWMVFTS</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="#pyFTS.models.multivariate.cmvfts.ClusteredMVFTS" title="pyFTS.models.multivariate.cmvfts.ClusteredMVFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.multivariate.cmvfts.ClusteredMVFTS</span></code></a></p>
<p>Granular multivariate weighted high order FTS</p>
<dl class="method">
<dt id="pyFTS.models.multivariate.granular.GranularWMVFTS.train">
<code class="descname">train</code><span class="sig-paren">(</span><em>data</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.models.multivariate.granular.GranularWMVFTS.train" title="Permalink to this definition"></a></dt>
<dd><p>Method specific parameter fitting</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>data</strong> training time series data</li>
<li><strong>kwargs</strong> Method specific parameters</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
</div>
</div>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="pyFTS.models.nonstationary.html" title="pyFTS.models.nonstationary package"
>next</a> |</li>
<li class="right" >
<a href="pyFTS.models.incremental.html" title="pyFTS.models.incremental package"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.6 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="pyFTS.html" >pyFTS package</a> &#187;</li>
<li class="nav-item nav-item-3"><a href="pyFTS.models.html" >pyFTS.models package</a> &#187;</li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2018, Machine Intelligence and Data Science Laboratory - UFMG - Brazil.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.7.2.
</div>
</body>
</html>