85 lines
3.0 KiB
Python

from pyFTS.common.transformations.transformation import Transformation
# from pandas import datetime
from sklearn.linear_model import LinearRegression
import numpy as np
import pandas as pd
class LinearTrend(Transformation):
"""
Linear Trend. Estimate
y'(t) = y(t) - (a*t+b)
y(t) = y'(t) + (a*t+b)
"""
def __init__(self, **kwargs):
super(LinearTrend, self).__init__()
self.name = 'LinearTrend'
self.index_type = kwargs.get('index_type','linear')
'''The type of the time index used to train the regression coefficients. Available types are: field, datetime'''
self.index_field = kwargs.get('index_field', None)
'''The Pandas Dataframe column to use as index'''
self.data_field = kwargs.get('data_field', None)
'''The Pandas Dataframe column to use as data'''
self.datetime_mask = kwargs.get('datetime_mask', None)
'''The Pandas Dataframe mask for datetime indexes '''
self.model = None
'''Regression model'''
def train(self, data, **kwargs):
x = data[self.index_field].values
if self.index_type == 'datetime':
x = pd.to_numeric(x, downcast='integer')
indexes = np.reshape(x, (len(x), 1))
values = data[self.data_field].values
self.model = LinearRegression()
self.model.fit(indexes, values)
def trend(self, data):
x = data[self.index_field].values
if self.index_type == 'datetime':
x = pd.to_numeric(x, downcast='integer')
indexes = np.reshape(x, (len(x), 1))
_trend = self.model.predict(indexes)
return _trend
def apply(self, data, param=None, **kwargs):
values = data[self.data_field].values
_trend = self.trend(data)
modified = values - _trend
return modified
def inverse(self, data, param=None, **kwargs):
x = self.generate_indexes(data, param[self.index_field].values[0], **kwargs)
indexes = np.reshape(x, (len(x), 1))
_trend = self.model.predict(indexes)
modified = data + _trend
return modified
def increment(self,value, **kwargs):
if self.index_type == 'linear':
return value + 1
elif self.index_type == 'datetime':
if 'date_offset' not in kwargs:
raise Exception('A pandas.DateOffset must be passed in the parameter ''date_offset''')
doff = kwargs.get('date_offset')
return value + doff
def generate_indexes(self, data, value, **kwargs):
if self.index_type == 'datetime':
ret = [self.increment(pd.to_datetime(value, format=self.datetime_mask), **kwargs)]
else:
ret = [self.increment(value, **kwargs)]
for i in np.arange(1,len(data)):
ret.append(self.increment(ret[-1], **kwargs))
if self.index_type == 'datetime':
ret = pd.Series(ret)
ret = pd.to_numeric(ret, downcast='integer')
return np.array(ret)