pyFTS/benchmarks/Util.py
2017-05-05 15:33:27 -03:00

80 lines
2.9 KiB
Python

"""
Benchmark utility functions
"""
import numpy as np
import pandas as pd
from copy import deepcopy
from pyFTS.common import Util
def save_dataframe_point(experiments, file, objs, rmse, save, sintetic, smape, times, u):
"""
Create a dataframe to store the benchmark results
:param experiments: dictionary with the execution results
:param file:
:param objs:
:param rmse:
:param save:
:param sintetic:
:param smape:
:param times:
:param u:
:return:
"""
ret = []
if sintetic:
for k in sorted(objs.keys()):
try:
mod = []
mfts = objs[k]
mod.append(mfts.shortname)
mod.append(mfts.order)
mod.append(mfts.partitioner.name)
mod.append(mfts.partitioner.partitions)
mod.append(len(mfts))
mod.append(np.round(np.nanmean(rmse[k]), 2))
mod.append(np.round(np.nanstd(rmse[k]), 2))
mod.append(np.round(np.nanmean(smape[k]), 2))
mod.append(np.round(np.nanstd(smape[k]), 2))
mod.append(np.round(np.nanmean(u[k]), 2))
mod.append(np.round(np.nanstd(u[k]), 2))
mod.append(np.round(np.nanmean(times[k]), 4))
ret.append(mod)
except Exception as ex:
print("Erro ao salvar ", k)
print("Exceção ", ex)
columns = ["Model", "Order", "Scheme","Partitions", "Size", "RMSEAVG", "RMSESTD", "SMAPEAVG", "SMAPESTD", "UAVG", "USTD", "TIMEAVG"]
else:
for k in sorted(objs.keys()):
try:
mfts = objs[k]
tmp = [mfts.shortname, mfts.order, mfts.partitioner.name, mfts.partitioner.partitions, len(mfts), 'RMSE']
tmp.extend(rmse[k])
ret.append(deepcopy(tmp))
tmp = [mfts.shortname, mfts.order, mfts.partitioner.name, mfts.partitioner.partitions, len(mfts), 'SMAPE']
tmp.extend(smape[k])
ret.append(deepcopy(tmp))
tmp = [mfts.shortname, mfts.order, mfts.partitioner.name, mfts.partitioner.partitions, len(mfts), 'U']
tmp.extend(u[k])
ret.append(deepcopy(tmp))
tmp = [mfts.shortname, mfts.order, mfts.partitioner.name, mfts.partitioner.partitions, len(mfts), 'TIME']
tmp.extend(times[k])
ret.append(deepcopy(tmp))
except Exception as ex:
print("Erro ao salvar ", k)
print("Exceção ", ex)
columns = [str(k) for k in np.arange(0, experiments)]
columns.insert(0, "Model")
columns.insert(1, "Order")
columns.insert(2, "Scheme")
columns.insert(3, "Partitions")
columns.insert(4, "Size")
columns.insert(5, "Measure")
dat = pd.DataFrame(ret, columns=columns)
if save: dat.to_csv(Util.uniquefilename(file), sep=";")
return dat