pyFTS/docs/build/html/pyFTS.probabilistic.html

443 lines
24 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="X-UA-Compatible" content="IE=Edge" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /><script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-55120145-3']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
<title>pyFTS.probabilistic package &#8212; pyFTS 1.6 documentation</title>
<link rel="stylesheet" href="_static/bizstyle.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<script type="text/javascript" src="_static/documentation_options.js"></script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/bizstyle.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="prev" title="pyFTS.partitioners package" href="pyFTS.partitioners.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0">
<!--[if lt IE 9]>
<script type="text/javascript" src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="pyFTS.partitioners.html" title="pyFTS.partitioners package"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.6 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="pyFTS.html" accesskey="U">pyFTS package</a> &#187;</li>
</ul>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<p class="logo"><a href="index.html">
<img class="logo" src="_static/logo_heading2.png" alt="Logo"/>
</a></p>
<h3><a href="index.html">Table Of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">pyFTS.probabilistic package</a><ul>
<li><a class="reference internal" href="#module-pyFTS.probabilistic">Module contents</a></li>
<li><a class="reference internal" href="#submodules">Submodules</a></li>
<li><a class="reference internal" href="#module-pyFTS.probabilistic.ProbabilityDistribution">pyFTS.probabilistic.ProbabilityDistribution module</a></li>
<li><a class="reference internal" href="#module-pyFTS.probabilistic.kde">pyFTS.probabilistic.kde module</a></li>
</ul>
</li>
</ul>
<h4>Previous topic</h4>
<p class="topless"><a href="pyFTS.partitioners.html"
title="previous chapter">pyFTS.partitioners package</a></p>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/pyFTS.probabilistic.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3>Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" />
<input type="submit" value="Go" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="pyfts-probabilistic-package">
<h1>pyFTS.probabilistic package<a class="headerlink" href="#pyfts-probabilistic-package" title="Permalink to this headline"></a></h1>
<div class="section" id="module-pyFTS.probabilistic">
<span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-pyFTS.probabilistic" title="Permalink to this headline"></a></h2>
<p>Probability Distribution objects</p>
</div>
<div class="section" id="submodules">
<h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this headline"></a></h2>
</div>
<div class="section" id="module-pyFTS.probabilistic.ProbabilityDistribution">
<span id="pyfts-probabilistic-probabilitydistribution-module"></span><h2>pyFTS.probabilistic.ProbabilityDistribution module<a class="headerlink" href="#module-pyFTS.probabilistic.ProbabilityDistribution" title="Permalink to this headline"></a></h2>
<dl class="class">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution">
<em class="property">class </em><code class="descclassname">pyFTS.probabilistic.ProbabilityDistribution.</code><code class="descname">ProbabilityDistribution</code><span class="sig-paren">(</span><em>type='KDE'</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Represents a discrete or continous probability distribution
If type is histogram, the PDF is discrete
If type is KDE the PDF is continuous</p>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append">
<code class="descname">append</code><span class="sig-paren">(</span><em>values</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append" title="Permalink to this definition"></a></dt>
<dd><p>Increment the frequency count for the values</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>values</strong> A list of values to account the frequency</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append_interval">
<code class="descname">append_interval</code><span class="sig-paren">(</span><em>intervals</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.append_interval" title="Permalink to this definition"></a></dt>
<dd><p>Increment the frequency count for all values inside an interval</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>intervals</strong> A list of intervals do increment the frequency</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.averageloglikelihood">
<code class="descname">averageloglikelihood</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.averageloglikelihood" title="Permalink to this definition"></a></dt>
<dd><p>Average log likelihood of the probability distribution with respect to data</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>data</strong> </td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.build_cdf_qtl">
<code class="descname">build_cdf_qtl</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.build_cdf_qtl" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.crossentropy">
<code class="descname">crossentropy</code><span class="sig-paren">(</span><em>q</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.crossentropy" title="Permalink to this definition"></a></dt>
<dd><p>Cross entropy between the actual probability distribution and the informed one,
H(P,Q) = - ∑ P(x) log ( Q(x) )</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>q</strong> a probabilistic.ProbabilityDistribution object</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Cross entropy between this probability distribution and the given distribution</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.cumulative">
<code class="descname">cumulative</code><span class="sig-paren">(</span><em>values</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.cumulative" title="Permalink to this definition"></a></dt>
<dd><p>Return the cumulative probability densities for the input values,
such that F(x) = P(X &lt;= x)</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>values</strong> A list of input values</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">The cumulative probability densities for the input values</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.density">
<code class="descname">density</code><span class="sig-paren">(</span><em>values</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.density" title="Permalink to this definition"></a></dt>
<dd><p>Return the probability densities for the input values</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>values</strong> List of values to return the densities</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">List of probability densities for the input values</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.differential_offset">
<code class="descname">differential_offset</code><span class="sig-paren">(</span><em>value</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.differential_offset" title="Permalink to this definition"></a></dt>
<dd><p>Auxiliary function for probability distributions of differentiated data</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>value</strong> </td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.empiricalloglikelihood">
<code class="descname">empiricalloglikelihood</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.empiricalloglikelihood" title="Permalink to this definition"></a></dt>
<dd><p>Empirical Log Likelihood of the probability distribution, L(P) = ∑ log( P(x) )</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.entropy">
<code class="descname">entropy</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.entropy" title="Permalink to this definition"></a></dt>
<dd><p>Return the entropy of the probability distribution, H(P) = E[ -ln P(X) ] = - ∑ P(x) log ( P(x) )</p>
<p>:return:the entropy of the probability distribution</p>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.expected_value">
<code class="descname">expected_value</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.expected_value" title="Permalink to this definition"></a></dt>
<dd><p>Return the expected value of the distribution, as E[X] = ∑ x * P(x)</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Returns:</th><td class="field-body">The expected value of the distribution</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.kullbackleiblerdivergence">
<code class="descname">kullbackleiblerdivergence</code><span class="sig-paren">(</span><em>q</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.kullbackleiblerdivergence" title="Permalink to this definition"></a></dt>
<dd><p>Kullback-Leibler divergence between the actual probability distribution and the informed one.
DKL(P || Q) = - ∑ P(x) log( P(X) / Q(x) )</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>q</strong> a probabilistic.ProbabilityDistribution object</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">Kullback-Leibler divergence</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.plot">
<code class="descname">plot</code><span class="sig-paren">(</span><em>axis=None, color='black', tam=[10, 6], title=None</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.plot" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.pseudologlikelihood">
<code class="descname">pseudologlikelihood</code><span class="sig-paren">(</span><em>data</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.pseudologlikelihood" title="Permalink to this definition"></a></dt>
<dd><p>Pseudo log likelihood of the probability distribution with respect to data</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>data</strong> </td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.quantile">
<code class="descname">quantile</code><span class="sig-paren">(</span><em>values</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.quantile" title="Permalink to this definition"></a></dt>
<dd><p>Return the Universe of Discourse values in relation to the quantile input values,
such that Q(tau) = min( {x | F(x) &gt;= tau })</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>values</strong> input values</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body">The list of the quantile values for the input values</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.set">
<code class="descname">set</code><span class="sig-paren">(</span><em>value</em>, <em>density</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution.set" title="Permalink to this definition"></a></dt>
<dd><p>Assert a probability density for a certain value value, such that P(value) = density</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first last simple">
<li><strong>value</strong> A value in the universe of discourse from the distribution</li>
<li><strong>density</strong> The probability density to assign to the value</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
<dl class="function">
<dt id="pyFTS.probabilistic.ProbabilityDistribution.from_point">
<code class="descclassname">pyFTS.probabilistic.ProbabilityDistribution.</code><code class="descname">from_point</code><span class="sig-paren">(</span><em>x</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.ProbabilityDistribution.from_point" title="Permalink to this definition"></a></dt>
<dd><p>Create a probability distribution from a scalar value</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> scalar value</li>
<li><strong>kwargs</strong> common parameters of the distribution</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last">the ProbabilityDistribution object</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.probabilistic.kde">
<span id="pyfts-probabilistic-kde-module"></span><h2>pyFTS.probabilistic.kde module<a class="headerlink" href="#module-pyFTS.probabilistic.kde" title="Permalink to this headline"></a></h2>
<p>Kernel Density Estimation</p>
<dl class="class">
<dt id="pyFTS.probabilistic.kde.KernelSmoothing">
<em class="property">class </em><code class="descclassname">pyFTS.probabilistic.kde.</code><code class="descname">KernelSmoothing</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference external" href="https://docs.python.org/3/library/functions.html#object" title="(in Python v3.8)"><code class="xref py py-class docutils literal notranslate"><span class="pre">object</span></code></a></p>
<p>Kernel Density Estimation</p>
<dl class="method">
<dt id="pyFTS.probabilistic.kde.KernelSmoothing.kernel_function">
<code class="descname">kernel_function</code><span class="sig-paren">(</span><em>u</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing.kernel_function" title="Permalink to this definition"></a></dt>
<dd><p>Apply the kernel</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><strong>u</strong> </td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"></td>
</tr>
</tbody>
</table>
</dd></dl>
<dl class="method">
<dt id="pyFTS.probabilistic.kde.KernelSmoothing.probability">
<code class="descname">probability</code><span class="sig-paren">(</span><em>x</em>, <em>**kwargs</em><span class="sig-paren">)</span><a class="headerlink" href="#pyFTS.probabilistic.kde.KernelSmoothing.probability" title="Permalink to this definition"></a></dt>
<dd><p>Probability of the point x on data</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">Parameters:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> </li>
<li><strong>data</strong> </li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">Returns:</th><td class="field-body"><p class="first last"></p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
</dd></dl>
</div>
</div>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="pyFTS.partitioners.html" title="pyFTS.partitioners package"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.6 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="pyFTS.html" >pyFTS package</a> &#187;</li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2018, Machine Intelligence and Data Science Laboratory - UFMG - Brazil.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.7.2.
</div>
</body>
</html>