1 line
50 KiB
JavaScript
1 line
50 KiB
JavaScript
Search.setIndex({docnames:["index","modules","pyFTS","pyFTS.benchmarks","pyFTS.common","pyFTS.data","pyFTS.hyperparam","pyFTS.models","pyFTS.models.ensemble","pyFTS.models.incremental","pyFTS.models.multivariate","pyFTS.models.nonstationary","pyFTS.models.seasonal","pyFTS.partitioners","pyFTS.probabilistic","quickstart"],envversion:53,filenames:["index.rst","modules.rst","pyFTS.rst","pyFTS.benchmarks.rst","pyFTS.common.rst","pyFTS.data.rst","pyFTS.hyperparam.rst","pyFTS.models.rst","pyFTS.models.ensemble.rst","pyFTS.models.incremental.rst","pyFTS.models.multivariate.rst","pyFTS.models.nonstationary.rst","pyFTS.models.seasonal.rst","pyFTS.partitioners.rst","pyFTS.probabilistic.rst","quickstart.rst"],objects:{"":{pyFTS:[2,0,0,"-"]},"pyFTS.benchmarks":{Measures:[3,0,0,"-"],ResidualAnalysis:[3,0,0,"-"],Util:[3,0,0,"-"],arima:[3,0,0,"-"],benchmarks:[3,0,0,"-"],knn:[3,0,0,"-"],naive:[3,0,0,"-"],quantreg:[3,0,0,"-"]},"pyFTS.benchmarks.Measures":{BoxLjungStatistic:[3,1,1,""],BoxPierceStatistic:[3,1,1,""],TheilsInequality:[3,1,1,""],UStatistic:[3,1,1,""],acf:[3,1,1,""],brier_score:[3,1,1,""],coverage:[3,1,1,""],crps:[3,1,1,""],get_distribution_statistics:[3,1,1,""],get_interval_statistics:[3,1,1,""],get_point_statistics:[3,1,1,""],heavyside:[3,1,1,""],heavyside_cdf:[3,1,1,""],mape:[3,1,1,""],mape_interval:[3,1,1,""],pinball:[3,1,1,""],pinball_mean:[3,1,1,""],pmf_to_cdf:[3,1,1,""],resolution:[3,1,1,""],rmse:[3,1,1,""],rmse_interval:[3,1,1,""],sharpness:[3,1,1,""],smape:[3,1,1,""],winkler_mean:[3,1,1,""],winkler_score:[3,1,1,""]},"pyFTS.benchmarks.ResidualAnalysis":{chi_squared:[3,1,1,""],compare_residuals:[3,1,1,""],plotResiduals:[3,1,1,""],plot_residuals:[3,1,1,""],residuals:[3,1,1,""],single_plot_residuals:[3,1,1,""]},"pyFTS.benchmarks.Util":{analytic_tabular_dataframe:[3,1,1,""],analytical_data_columns:[3,1,1,""],base_dataframe_columns:[3,1,1,""],cast_dataframe_to_synthetic:[3,1,1,""],cast_dataframe_to_synthetic_interval:[3,1,1,""],cast_dataframe_to_synthetic_point:[3,1,1,""],cast_dataframe_to_synthetic_probabilistic:[3,1,1,""],check_ignore_list:[3,1,1,""],check_replace_list:[3,1,1,""],create_benchmark_tables:[3,1,1,""],extract_measure:[3,1,1,""],find_best:[3,1,1,""],get_dataframe_from_bd:[3,1,1,""],insert_benchmark:[3,1,1,""],interval_dataframe_analytic_columns:[3,1,1,""],interval_dataframe_synthetic_columns:[3,1,1,""],open_benchmark_db:[3,1,1,""],plot_dataframe_interval:[3,1,1,""],plot_dataframe_interval_pinball:[3,1,1,""],plot_dataframe_point:[3,1,1,""],plot_dataframe_probabilistic:[3,1,1,""],point_dataframe_analytic_columns:[3,1,1,""],point_dataframe_synthetic_columns:[3,1,1,""],probabilistic_dataframe_analytic_columns:[3,1,1,""],probabilistic_dataframe_synthetic_columns:[3,1,1,""],process_common_data:[3,1,1,""],save_dataframe_interval:[3,1,1,""],save_dataframe_point:[3,1,1,""],save_dataframe_probabilistic:[3,1,1,""],scale:[3,1,1,""],scale_params:[3,1,1,""],stats:[3,1,1,""],tabular_dataframe_columns:[3,1,1,""],unified_scaled_interval:[3,1,1,""],unified_scaled_interval_pinball:[3,1,1,""],unified_scaled_point:[3,1,1,""],unified_scaled_probabilistic:[3,1,1,""]},"pyFTS.benchmarks.arima":{ARIMA:[3,2,1,""]},"pyFTS.benchmarks.arima.ARIMA":{ar:[3,3,1,""],forecast:[3,3,1,""],forecast_ahead_distribution:[3,3,1,""],forecast_ahead_interval:[3,3,1,""],forecast_distribution:[3,3,1,""],forecast_interval:[3,3,1,""],ma:[3,3,1,""],train:[3,3,1,""]},"pyFTS.benchmarks.benchmarks":{SelecaoSimples_MenorRMSE:[3,1,1,""],compareModelsPlot:[3,1,1,""],compareModelsTable:[3,1,1,""],get_benchmark_interval_methods:[3,1,1,""],get_benchmark_point_methods:[3,1,1,""],get_benchmark_probabilistic_methods:[3,1,1,""],get_interval_methods:[3,1,1,""],get_point_methods:[3,1,1,""],get_point_multivariate_methods:[3,1,1,""],get_probabilistic_methods:[3,1,1,""],pftsExploreOrderAndPartitions:[3,1,1,""],plotCompared:[3,1,1,""],plot_compared_intervals_ahead:[3,1,1,""],plot_compared_series:[3,1,1,""],plot_density_rectange:[3,1,1,""],plot_distribution:[3,1,1,""],plot_interval:[3,1,1,""],plot_point:[3,1,1,""],plot_probability_distributions:[3,1,1,""],print_distribution_statistics:[3,1,1,""],print_interval_statistics:[3,1,1,""],print_point_statistics:[3,1,1,""],process_interval_jobs:[3,1,1,""],process_point_jobs:[3,1,1,""],process_probabilistic_jobs:[3,1,1,""],run_interval:[3,1,1,""],run_point:[3,1,1,""],run_probabilistic:[3,1,1,""],simpleSearch_RMSE:[3,1,1,""],sliding_window_benchmarks:[3,1,1,""]},"pyFTS.benchmarks.knn":{KNearestNeighbors:[3,2,1,""]},"pyFTS.benchmarks.knn.KNearestNeighbors":{forecast_distribution:[3,3,1,""],knn:[3,3,1,""],train:[3,3,1,""]},"pyFTS.benchmarks.naive":{Naive:[3,2,1,""]},"pyFTS.benchmarks.naive.Naive":{forecast:[3,3,1,""]},"pyFTS.benchmarks.quantreg":{QuantileRegression:[3,2,1,""]},"pyFTS.benchmarks.quantreg.QuantileRegression":{forecast:[3,3,1,""],forecast_ahead_distribution:[3,3,1,""],forecast_ahead_interval:[3,3,1,""],forecast_distribution:[3,3,1,""],forecast_interval:[3,3,1,""],interval_to_interval:[3,3,1,""],linearmodel:[3,3,1,""],point_to_interval:[3,3,1,""],train:[3,3,1,""]},"pyFTS.common":{Composite:[4,0,0,"-"],FLR:[4,0,0,"-"],FuzzySet:[4,0,0,"-"],Membership:[4,0,0,"-"],SortedCollection:[4,0,0,"-"],Transformations:[4,0,0,"-"],Util:[4,0,0,"-"],flrg:[4,0,0,"-"],fts:[4,0,0,"-"],tree:[4,0,0,"-"]},"pyFTS.common.Composite":{FuzzySet:[4,2,1,""]},"pyFTS.common.Composite.FuzzySet":{append:[4,3,1,""],append_set:[4,3,1,""],membership:[4,3,1,""],transform:[4,3,1,""]},"pyFTS.common.FLR":{FLR:[4,2,1,""],IndexedFLR:[4,2,1,""],generate_high_order_recurrent_flr:[4,1,1,""],generate_indexed_flrs:[4,1,1,""],generate_non_recurrent_flrs:[4,1,1,""],generate_recurrent_flrs:[4,1,1,""]},"pyFTS.common.FLR.FLR":{LHS:[4,4,1,""],RHS:[4,4,1,""]},"pyFTS.common.FLR.IndexedFLR":{index:[4,4,1,""]},"pyFTS.common.FuzzySet":{FuzzySet:[4,2,1,""],check_bounds:[4,1,1,""],check_bounds_index:[4,1,1,""],fuzzyfy:[4,1,1,""],fuzzyfy_instance:[4,1,1,""],fuzzyfy_instances:[4,1,1,""],fuzzyfy_series:[4,1,1,""],fuzzyfy_series_old:[4,1,1,""],get_fuzzysets:[4,1,1,""],get_maximum_membership_fuzzyset:[4,1,1,""],get_maximum_membership_fuzzyset_index:[4,1,1,""],grant_bounds:[4,1,1,""],set_ordered:[4,1,1,""]},"pyFTS.common.FuzzySet.FuzzySet":{Z:[4,4,1,""],alpha:[4,4,1,""],centroid:[4,4,1,""],membership:[4,3,1,""],mf:[4,4,1,""],name:[4,4,1,""],parameters:[4,4,1,""],partition_function:[4,3,1,""],transform:[4,3,1,""],type:[4,4,1,""],variable:[4,4,1,""]},"pyFTS.common.Membership":{bellmf:[4,1,1,""],gaussmf:[4,1,1,""],sigmf:[4,1,1,""],singleton:[4,1,1,""],trapmf:[4,1,1,""],trimf:[4,1,1,""]},"pyFTS.common.SortedCollection":{SortedCollection:[4,2,1,""]},"pyFTS.common.SortedCollection.SortedCollection":{around:[4,3,1,""],between:[4,3,1,""],clear:[4,3,1,""],copy:[4,3,1,""],count:[4,3,1,""],find:[4,3,1,""],find_ge:[4,3,1,""],find_gt:[4,3,1,""],find_le:[4,3,1,""],find_lt:[4,3,1,""],index:[4,3,1,""],insert:[4,3,1,""],insert_right:[4,3,1,""],inside:[4,3,1,""],key:[4,4,1,""],remove:[4,3,1,""]},"pyFTS.common.Transformations":{AdaptiveExpectation:[4,2,1,""],BoxCox:[4,2,1,""],Differential:[4,2,1,""],Scale:[4,2,1,""],Transformation:[4,2,1,""],Z:[4,1,1,""],aggregate:[4,1,1,""],roi:[4,1,1,""],smoothing:[4,1,1,""]},"pyFTS.common.Transformations.AdaptiveExpectation":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.BoxCox":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.Differential":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.Scale":{apply:[4,3,1,""],inverse:[4,3,1,""],parameters:[4,4,1,""]},"pyFTS.common.Transformations.Transformation":{apply:[4,3,1,""],inverse:[4,3,1,""]},"pyFTS.common.Util":{current_milli_time:[4,1,1,""],distributed_predict:[4,1,1,""],distributed_train:[4,1,1,""],draw_sets_on_axis:[4,1,1,""],enumerate2:[4,1,1,""],load_env:[4,1,1,""],load_obj:[4,1,1,""],persist_env:[4,1,1,""],persist_obj:[4,1,1,""],plot_rules:[4,1,1,""],show_and_save_image:[4,1,1,""],simple_model_predict:[4,1,1,""],simple_model_train:[4,1,1,""],sliding_window:[4,1,1,""],start_dispy_cluster:[4,1,1,""],stop_dispy_cluster:[4,1,1,""],uniquefilename:[4,1,1,""]},"pyFTS.common.flrg":{FLRG:[4,2,1,""]},"pyFTS.common.flrg.FLRG":{LHS:[4,4,1,""],RHS:[4,4,1,""],append_rhs:[4,3,1,""],get_key:[4,3,1,""],get_lower:[4,3,1,""],get_membership:[4,3,1,""],get_midpoint:[4,3,1,""],get_midpoints:[4,3,1,""],get_upper:[4,3,1,""],order:[4,4,1,""]},"pyFTS.common.fts":{FTS:[4,2,1,""]},"pyFTS.common.fts.FTS":{alpha_cut:[4,4,1,""],append_transformation:[4,3,1,""],apply_inverse_transformations:[4,3,1,""],apply_transformations:[4,3,1,""],auto_update:[4,4,1,""],benchmark_only:[4,4,1,""],clone_parameters:[4,3,1,""],detail:[4,4,1,""],fit:[4,3,1,""],flrgs:[4,4,1,""],forecast:[4,3,1,""],forecast_ahead:[4,3,1,""],forecast_ahead_distribution:[4,3,1,""],forecast_ahead_interval:[4,3,1,""],forecast_distribution:[4,3,1,""],forecast_interval:[4,3,1,""],fuzzy:[4,3,1,""],get_UoD:[4,3,1,""],has_interval_forecasting:[4,4,1,""],has_point_forecasting:[4,4,1,""],has_probability_forecasting:[4,4,1,""],has_seasonality:[4,4,1,""],indexer:[4,4,1,""],is_high_order:[4,4,1,""],is_multivariate:[4,4,1,""],len_total:[4,3,1,""],max_lag:[4,4,1,""],merge:[4,3,1,""],min_order:[4,4,1,""],name:[4,4,1,""],order:[4,4,1,""],original_max:[4,4,1,""],original_min:[4,4,1,""],partitioner:[4,4,1,""],predict:[4,3,1,""],sets:[4,4,1,""],shortname:[4,4,1,""],train:[4,3,1,""],transformations:[4,4,1,""],transformations_param:[4,4,1,""],uod_clip:[4,4,1,""]},"pyFTS.common.tree":{FLRGTree:[4,2,1,""],FLRGTreeNode:[4,2,1,""],build_tree_without_order:[4,1,1,""],flat:[4,1,1,""]},"pyFTS.common.tree.FLRGTreeNode":{appendChild:[4,3,1,""],getChildren:[4,3,1,""],getStr:[4,3,1,""],paths:[4,3,1,""]},"pyFTS.data":{AirPassengers:[5,0,0,"-"],Bitcoin:[5,0,0,"-"],DowJones:[5,0,0,"-"],EURGBP:[5,0,0,"-"],EURUSD:[5,0,0,"-"],Enrollments:[5,0,0,"-"],Ethereum:[5,0,0,"-"],GBPUSD:[5,0,0,"-"],INMET:[5,0,0,"-"],Malaysia:[5,0,0,"-"],NASDAQ:[5,0,0,"-"],SONDA:[5,0,0,"-"],SP500:[5,0,0,"-"],TAIEX:[5,0,0,"-"],artificial:[5,0,0,"-"],common:[5,0,0,"-"],henon:[5,0,0,"-"],logistic_map:[5,0,0,"-"],lorentz:[5,0,0,"-"],mackey_glass:[5,0,0,"-"],rossler:[5,0,0,"-"],sunspots:[5,0,0,"-"]},"pyFTS.data.AirPassengers":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.Bitcoin":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.DowJones":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.EURGBP":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.EURUSD":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.Enrollments":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.Ethereum":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.GBPUSD":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.INMET":{get_dataframe:[5,1,1,""]},"pyFTS.data.Malaysia":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.NASDAQ":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.SONDA":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.SP500":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.TAIEX":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.artificial":{generate_gaussian_linear:[5,1,1,""],generate_uniform_linear:[5,1,1,""],random_walk:[5,1,1,""],white_noise:[5,1,1,""]},"pyFTS.data.common":{get_dataframe:[5,1,1,""]},"pyFTS.data.henon":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.logistic_map":{get_data:[5,1,1,""]},"pyFTS.data.lorentz":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.mackey_glass":{get_data:[5,1,1,""]},"pyFTS.data.rossler":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.data.sunspots":{get_data:[5,1,1,""],get_dataframe:[5,1,1,""]},"pyFTS.hyperparam":{GridSearch:[6,0,0,"-"],Util:[6,0,0,"-"]},"pyFTS.hyperparam.GridSearch":{cluster_method:[6,1,1,""],dict_individual:[6,1,1,""],execute:[6,1,1,""],process_jobs:[6,1,1,""]},"pyFTS.hyperparam.Util":{create_hyperparam_tables:[6,1,1,""],insert_hyperparam:[6,1,1,""],open_hyperparam_db:[6,1,1,""]},"pyFTS.models":{chen:[7,0,0,"-"],cheng:[7,0,0,"-"],ensemble:[8,0,0,"-"],hofts:[7,0,0,"-"],hwang:[7,0,0,"-"],ifts:[7,0,0,"-"],incremental:[9,0,0,"-"],ismailefendi:[7,0,0,"-"],multivariate:[10,0,0,"-"],nonstationary:[11,0,0,"-"],pwfts:[7,0,0,"-"],sadaei:[7,0,0,"-"],seasonal:[12,0,0,"-"],song:[7,0,0,"-"],yu:[7,0,0,"-"]},"pyFTS.models.chen":{ConventionalFLRG:[7,2,1,""],ConventionalFTS:[7,2,1,""]},"pyFTS.models.chen.ConventionalFLRG":{append_rhs:[7,3,1,""],get_key:[7,3,1,""]},"pyFTS.models.chen.ConventionalFTS":{forecast:[7,3,1,""],generate_flrg:[7,3,1,""],train:[7,3,1,""]},"pyFTS.models.cheng":{TrendWeightedFLRG:[7,2,1,""],TrendWeightedFTS:[7,2,1,""]},"pyFTS.models.cheng.TrendWeightedFLRG":{weights:[7,3,1,""]},"pyFTS.models.cheng.TrendWeightedFTS":{generate_FLRG:[7,3,1,""]},"pyFTS.models.ensemble":{ensemble:[8,0,0,"-"],multiseasonal:[8,0,0,"-"]},"pyFTS.models.ensemble.ensemble":{AllMethodEnsembleFTS:[8,2,1,""],EnsembleFTS:[8,2,1,""],sampler:[8,1,1,""]},"pyFTS.models.ensemble.ensemble.AllMethodEnsembleFTS":{set_transformations:[8,3,1,""],train:[8,3,1,""]},"pyFTS.models.ensemble.ensemble.EnsembleFTS":{alpha:[8,4,1,""],append_model:[8,3,1,""],forecast:[8,3,1,""],forecast_ahead_distribution:[8,3,1,""],forecast_ahead_interval:[8,3,1,""],forecast_distribution:[8,3,1,""],forecast_interval:[8,3,1,""],get_distribution_interquantile:[8,3,1,""],get_interval:[8,3,1,""],get_models_forecasts:[8,3,1,""],get_point:[8,3,1,""],interval_method:[8,4,1,""],models:[8,4,1,""],parameters:[8,4,1,""],point_method:[8,4,1,""],train:[8,3,1,""]},"pyFTS.models.ensemble.multiseasonal":{SeasonalEnsembleFTS:[8,2,1,""],train_individual_model:[8,1,1,""]},"pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS":{forecast_distribution:[8,3,1,""],train:[8,3,1,""],update_uod:[8,3,1,""]},"pyFTS.models.hofts":{HighOrderFLRG:[7,2,1,""],HighOrderFTS:[7,2,1,""],WeightedHighOrderFLRG:[7,2,1,""],WeightedHighOrderFTS:[7,2,1,""]},"pyFTS.models.hofts.HighOrderFLRG":{append_lhs:[7,3,1,""],append_rhs:[7,3,1,""]},"pyFTS.models.hofts.HighOrderFTS":{configure_lags:[7,3,1,""],forecast:[7,3,1,""],generate_flrg:[7,3,1,""],generate_flrg_fuzzyfied:[7,3,1,""],generate_lhs_flrg:[7,3,1,""],generate_lhs_flrg_fuzzyfied:[7,3,1,""],train:[7,3,1,""]},"pyFTS.models.hofts.WeightedHighOrderFLRG":{append_lhs:[7,3,1,""],append_rhs:[7,3,1,""],get_midpoint:[7,3,1,""],weights:[7,3,1,""]},"pyFTS.models.hofts.WeightedHighOrderFTS":{generate_lhs_flrg_fuzzyfied:[7,3,1,""]},"pyFTS.models.hwang":{HighOrderFTS:[7,2,1,""]},"pyFTS.models.hwang.HighOrderFTS":{configure_lags:[7,3,1,""],forecast:[7,3,1,""],train:[7,3,1,""]},"pyFTS.models.ifts":{IntervalFTS:[7,2,1,""]},"pyFTS.models.ifts.IntervalFTS":{forecast_interval:[7,3,1,""],get_lower:[7,3,1,""],get_sequence_membership:[7,3,1,""],get_upper:[7,3,1,""]},"pyFTS.models.incremental":{Retrainer:[9,0,0,"-"]},"pyFTS.models.incremental.Retrainer":{Retrainer:[9,2,1,""]},"pyFTS.models.incremental.Retrainer.Retrainer":{auto_update:[9,4,1,""],batch_size:[9,4,1,""],forecast:[9,3,1,""],fts_method:[9,4,1,""],fts_params:[9,4,1,""],model:[9,4,1,""],partitioner:[9,4,1,""],partitioner_method:[9,4,1,""],partitioner_params:[9,4,1,""],train:[9,3,1,""],window_length:[9,4,1,""]},"pyFTS.models.ismailefendi":{ImprovedWeightedFLRG:[7,2,1,""],ImprovedWeightedFTS:[7,2,1,""]},"pyFTS.models.ismailefendi.ImprovedWeightedFLRG":{append_rhs:[7,3,1,""],weights:[7,3,1,""]},"pyFTS.models.ismailefendi.ImprovedWeightedFTS":{forecast:[7,3,1,""],generate_flrg:[7,3,1,""],train:[7,3,1,""]},"pyFTS.models.multivariate":{FLR:[10,0,0,"-"],cmvfts:[10,0,0,"-"],common:[10,0,0,"-"],flrg:[10,0,0,"-"],mvfts:[10,0,0,"-"],variable:[10,0,0,"-"],wmvfts:[10,0,0,"-"]},"pyFTS.models.multivariate.FLR":{FLR:[10,2,1,""]},"pyFTS.models.multivariate.FLR.FLR":{set_lhs:[10,3,1,""],set_rhs:[10,3,1,""]},"pyFTS.models.multivariate.cmvfts":{ClusteredMVFTS:[10,2,1,""]},"pyFTS.models.multivariate.cmvfts.ClusteredMVFTS":{cluster:[10,4,1,""],cluster_method:[10,4,1,""],cluster_params:[10,4,1,""],forecast:[10,3,1,""],fts_method:[10,4,1,""],fts_params:[10,4,1,""],fuzzyfy:[10,3,1,""],model:[10,4,1,""],train:[10,3,1,""]},"pyFTS.models.multivariate.common":{MultivariateFuzzySet:[10,2,1,""],fuzzyfy_instance:[10,1,1,""],fuzzyfy_instance_clustered:[10,1,1,""]},"pyFTS.models.multivariate.common.MultivariateFuzzySet":{append_set:[10,3,1,""],membership:[10,3,1,""]},"pyFTS.models.multivariate.flrg":{FLRG:[10,2,1,""]},"pyFTS.models.multivariate.flrg.FLRG":{append_rhs:[10,3,1,""],get_membership:[10,3,1,""],set_lhs:[10,3,1,""]},"pyFTS.models.multivariate.mvfts":{MVFTS:[10,2,1,""]},"pyFTS.models.multivariate.mvfts.MVFTS":{append_variable:[10,3,1,""],apply_transformations:[10,3,1,""],clone_parameters:[10,3,1,""],forecast:[10,3,1,""],forecast_ahead:[10,3,1,""],format_data:[10,3,1,""],generate_flrg:[10,3,1,""],generate_flrs:[10,3,1,""],generate_lhs_flrs:[10,3,1,""],train:[10,3,1,""]},"pyFTS.models.multivariate.variable":{Variable:[10,2,1,""]},"pyFTS.models.multivariate.variable.Variable":{alias:[10,4,1,""],apply_inverse_transformations:[10,3,1,""],apply_transformations:[10,3,1,""],build:[10,3,1,""],data_label:[10,4,1,""],name:[10,4,1,""]},"pyFTS.models.multivariate.wmvfts":{WeightedFLRG:[10,2,1,""],WeightedMVFTS:[10,2,1,""]},"pyFTS.models.multivariate.wmvfts.WeightedFLRG":{append_rhs:[10,3,1,""],get_midpoint:[10,3,1,""],weights:[10,3,1,""]},"pyFTS.models.multivariate.wmvfts.WeightedMVFTS":{generate_flrg:[10,3,1,""]},"pyFTS.models.nonstationary":{common:[11,0,0,"-"],cvfts:[11,0,0,"-"],flrg:[11,0,0,"-"],honsfts:[11,0,0,"-"],nsfts:[11,0,0,"-"],partitioners:[11,0,0,"-"],perturbation:[11,0,0,"-"],util:[11,0,0,"-"]},"pyFTS.models.nonstationary.common":{FuzzySet:[11,2,1,""],check_bounds:[11,1,1,""],check_bounds_index:[11,1,1,""],fuzzify:[11,1,1,""],fuzzySeries:[11,1,1,""],window_index:[11,1,1,""]},"pyFTS.models.nonstationary.common.FuzzySet":{get_lower:[11,3,1,""],get_midpoint:[11,3,1,""],get_upper:[11,3,1,""],location:[11,4,1,""],location_params:[11,4,1,""],membership:[11,3,1,""],noise:[11,4,1,""],noise_params:[11,4,1,""],perform_location:[11,3,1,""],perform_width:[11,3,1,""],perturbate_parameters:[11,3,1,""],width:[11,4,1,""],width_params:[11,4,1,""]},"pyFTS.models.nonstationary.cvfts":{ConditionalVarianceFTS:[11,2,1,""],HighOrderNonstationaryFLRG:[11,2,1,""]},"pyFTS.models.nonstationary.cvfts.ConditionalVarianceFTS":{forecast:[11,3,1,""],forecast_interval:[11,3,1,""],generate_flrg:[11,3,1,""],perturbation_factors:[11,3,1,""],perturbation_factors__old:[11,3,1,""],train:[11,3,1,""]},"pyFTS.models.nonstationary.cvfts.HighOrderNonstationaryFLRG":{append_lhs:[11,3,1,""],append_rhs:[11,3,1,""]},"pyFTS.models.nonstationary.flrg":{NonStationaryFLRG:[11,2,1,""]},"pyFTS.models.nonstationary.flrg.NonStationaryFLRG":{get_key:[11,3,1,""],get_lower:[11,3,1,""],get_membership:[11,3,1,""],get_midpoint:[11,3,1,""],get_upper:[11,3,1,""],unpack_args:[11,3,1,""]},"pyFTS.models.nonstationary.honsfts":{HighOrderNonStationaryFLRG:[11,2,1,""],HighOrderNonStationaryFTS:[11,2,1,""]},"pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFLRG":{append_lhs:[11,3,1,""],append_rhs:[11,3,1,""]},"pyFTS.models.nonstationary.honsfts.HighOrderNonStationaryFTS":{forecast:[11,3,1,""],forecast_interval:[11,3,1,""],generate_flrg:[11,3,1,""],train:[11,3,1,""]},"pyFTS.models.nonstationary.nsfts":{ConventionalNonStationaryFLRG:[11,2,1,""],NonStationaryFTS:[11,2,1,""]},"pyFTS.models.nonstationary.nsfts.ConventionalNonStationaryFLRG":{append_rhs:[11,3,1,""],get_key:[11,3,1,""]},"pyFTS.models.nonstationary.nsfts.NonStationaryFTS":{conditional_perturbation_factors:[11,3,1,""],forecast:[11,3,1,""],forecast_interval:[11,3,1,""],generate_flrg:[11,3,1,""],train:[11,3,1,""]},"pyFTS.models.nonstationary.partitioners":{PolynomialNonStationaryPartitioner:[11,2,1,""],SimpleNonStationaryPartitioner:[11,2,1,""],simplenonstationary_gridpartitioner_builder:[11,1,1,""]},"pyFTS.models.nonstationary.partitioners.PolynomialNonStationaryPartitioner":{build:[11,3,1,""],get_polynomial_perturbations:[11,3,1,""],poly_width:[11,3,1,""],scale_down:[11,3,1,""],scale_up:[11,3,1,""]},"pyFTS.models.nonstationary.partitioners.SimpleNonStationaryPartitioner":{build:[11,3,1,""]},"pyFTS.models.nonstationary.perturbation":{exponential:[11,1,1,""],linear:[11,1,1,""],periodic:[11,1,1,""],polynomial:[11,1,1,""]},"pyFTS.models.nonstationary.util":{plot_sets:[11,1,1,""],plot_sets_conditional:[11,1,1,""]},"pyFTS.models.pwfts":{ProbabilisticWeightedFLRG:[7,2,1,""],ProbabilisticWeightedFTS:[7,2,1,""],visualize_distributions:[7,1,1,""]},"pyFTS.models.pwfts.ProbabilisticWeightedFLRG":{append_rhs:[7,3,1,""],get_lower:[7,3,1,""],get_membership:[7,3,1,""],get_midpoint:[7,3,1,""],get_upper:[7,3,1,""],lhs_conditional_probability:[7,3,1,""],partition_function:[7,3,1,""],rhs_conditional_probability:[7,3,1,""],rhs_unconditional_probability:[7,3,1,""]},"pyFTS.models.pwfts.ProbabilisticWeightedFTS":{add_new_PWFLGR:[7,3,1,""],flrg_lhs_conditional_probability:[7,3,1,""],flrg_lhs_unconditional_probability:[7,3,1,""],flrg_rhs_conditional_probability:[7,3,1,""],forecast:[7,3,1,""],forecast_ahead:[7,3,1,""],forecast_ahead_distribution:[7,3,1,""],forecast_ahead_interval:[7,3,1,""],forecast_distribution:[7,3,1,""],forecast_interval:[7,3,1,""],generate_flrg:[7,3,1,""],generate_lhs_flrg:[7,3,1,""],generate_lhs_flrg_fuzzyfied:[7,3,1,""],get_lower:[7,3,1,""],get_midpoint:[7,3,1,""],get_upper:[7,3,1,""],interval_heuristic:[7,3,1,""],interval_quantile:[7,3,1,""],point_expected_value:[7,3,1,""],point_heuristic:[7,3,1,""],train:[7,3,1,""],update_model:[7,3,1,""]},"pyFTS.models.sadaei":{ExponentialyWeightedFLRG:[7,2,1,""],ExponentialyWeightedFTS:[7,2,1,""]},"pyFTS.models.sadaei.ExponentialyWeightedFLRG":{append_rhs:[7,3,1,""],weights:[7,3,1,""]},"pyFTS.models.sadaei.ExponentialyWeightedFTS":{forecast:[7,3,1,""],generate_flrg:[7,3,1,""],train:[7,3,1,""]},"pyFTS.models.seasonal":{SeasonalIndexer:[12,0,0,"-"],cmsfts:[12,0,0,"-"],common:[12,0,0,"-"],msfts:[12,0,0,"-"],partitioner:[12,0,0,"-"],sfts:[12,0,0,"-"]},"pyFTS.models.seasonal.SeasonalIndexer":{DataFrameSeasonalIndexer:[12,2,1,""],DateTimeSeasonalIndexer:[12,2,1,""],LinearSeasonalIndexer:[12,2,1,""],SeasonalIndexer:[12,2,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.DataFrameSeasonalIndexer":{get_data:[12,3,1,""],get_data_by_season:[12,3,1,""],get_index_by_season:[12,3,1,""],get_season_by_index:[12,3,1,""],get_season_of_data:[12,3,1,""],set_data:[12,3,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.DateTimeSeasonalIndexer":{get_data:[12,3,1,""],get_data_by_season:[12,3,1,""],get_index:[12,3,1,""],get_index_by_season:[12,3,1,""],get_season_by_index:[12,3,1,""],get_season_of_data:[12,3,1,""],set_data:[12,3,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.LinearSeasonalIndexer":{get_data:[12,3,1,""],get_index_by_season:[12,3,1,""],get_season_by_index:[12,3,1,""],get_season_of_data:[12,3,1,""]},"pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer":{get_data:[12,3,1,""],get_data_by_season:[12,3,1,""],get_index:[12,3,1,""],get_index_by_season:[12,3,1,""],get_season_by_index:[12,3,1,""],get_season_of_data:[12,3,1,""]},"pyFTS.models.seasonal.cmsfts":{ContextualMultiSeasonalFTS:[12,2,1,""],ContextualSeasonalFLRG:[12,2,1,""]},"pyFTS.models.seasonal.cmsfts.ContextualMultiSeasonalFTS":{forecast:[12,3,1,""],forecast_ahead:[12,3,1,""],generate_flrg:[12,3,1,""],get_midpoints:[12,3,1,""],train:[12,3,1,""]},"pyFTS.models.seasonal.cmsfts.ContextualSeasonalFLRG":{append_rhs:[12,3,1,""]},"pyFTS.models.seasonal.common":{DateTime:[12,2,1,""],FuzzySet:[12,2,1,""],strip_datepart:[12,1,1,""]},"pyFTS.models.seasonal.common.DateTime":{day_of_month:[12,4,1,""],day_of_week:[12,4,1,""],day_of_year:[12,4,1,""],hour:[12,4,1,""],hour_of_day:[12,4,1,""],hour_of_month:[12,4,1,""],hour_of_week:[12,4,1,""],hour_of_year:[12,4,1,""],minute_of_day:[12,4,1,""],minute_of_hour:[12,4,1,""],minute_of_month:[12,4,1,""],minute_of_week:[12,4,1,""],minute_of_year:[12,4,1,""],month:[12,4,1,""],second:[12,4,1,""],second_of_day:[12,4,1,""],second_of_hour:[12,4,1,""],second_of_minute:[12,4,1,""],year:[12,4,1,""]},"pyFTS.models.seasonal.common.FuzzySet":{transform:[12,3,1,""]},"pyFTS.models.seasonal.msfts":{MultiSeasonalFTS:[12,2,1,""]},"pyFTS.models.seasonal.msfts.MultiSeasonalFTS":{forecast:[12,3,1,""],forecast_ahead:[12,3,1,""],generate_flrg:[12,3,1,""],train:[12,3,1,""]},"pyFTS.models.seasonal.partitioner":{TimeGridPartitioner:[12,2,1,""]},"pyFTS.models.seasonal.partitioner.TimeGridPartitioner":{build:[12,3,1,""],plot:[12,3,1,""]},"pyFTS.models.seasonal.sfts":{SeasonalFLRG:[12,2,1,""],SeasonalFTS:[12,2,1,""]},"pyFTS.models.seasonal.sfts.SeasonalFLRG":{append_rhs:[12,3,1,""],get_key:[12,3,1,""]},"pyFTS.models.seasonal.sfts.SeasonalFTS":{forecast:[12,3,1,""],generate_flrg:[12,3,1,""],get_midpoints:[12,3,1,""],train:[12,3,1,""]},"pyFTS.models.song":{ConventionalFTS:[7,2,1,""]},"pyFTS.models.song.ConventionalFTS":{flr_membership_matrix:[7,3,1,""],forecast:[7,3,1,""],operation_matrix:[7,3,1,""],train:[7,3,1,""]},"pyFTS.models.yu":{WeightedFLRG:[7,2,1,""],WeightedFTS:[7,2,1,""]},"pyFTS.models.yu.WeightedFLRG":{append_rhs:[7,3,1,""],weights:[7,3,1,""]},"pyFTS.models.yu.WeightedFTS":{forecast:[7,3,1,""],generate_FLRG:[7,3,1,""],train:[7,3,1,""]},"pyFTS.partitioners":{CMeans:[13,0,0,"-"],Entropy:[13,0,0,"-"],FCM:[13,0,0,"-"],Grid:[13,0,0,"-"],Huarng:[13,0,0,"-"],Singleton:[13,0,0,"-"],Util:[13,0,0,"-"],parallel_util:[13,0,0,"-"],partitioner:[13,0,0,"-"]},"pyFTS.partitioners.CMeans":{CMeansPartitioner:[13,2,1,""],c_means:[13,1,1,""],distance:[13,1,1,""]},"pyFTS.partitioners.CMeans.CMeansPartitioner":{build:[13,3,1,""]},"pyFTS.partitioners.Entropy":{EntropyPartitioner:[13,2,1,""],PMF:[13,1,1,""],bestSplit:[13,1,1,""],entropy:[13,1,1,""],informationGain:[13,1,1,""],splitAbove:[13,1,1,""],splitBelow:[13,1,1,""]},"pyFTS.partitioners.Entropy.EntropyPartitioner":{build:[13,3,1,""]},"pyFTS.partitioners.FCM":{FCMPartitioner:[13,2,1,""],fuzzy_cmeans:[13,1,1,""],fuzzy_distance:[13,1,1,""],membership:[13,1,1,""]},"pyFTS.partitioners.FCM.FCMPartitioner":{build:[13,3,1,""]},"pyFTS.partitioners.Grid":{GridPartitioner:[13,2,1,""]},"pyFTS.partitioners.Grid.GridPartitioner":{build:[13,3,1,""]},"pyFTS.partitioners.Huarng":{HuarngPartitioner:[13,2,1,""]},"pyFTS.partitioners.Huarng.HuarngPartitioner":{build:[13,3,1,""]},"pyFTS.partitioners.Singleton":{SingletonPartitioner:[13,2,1,""]},"pyFTS.partitioners.Singleton.SingletonPartitioner":{build:[13,3,1,""]},"pyFTS.partitioners.Util":{explore_partitioners:[13,1,1,""],plot_partitioners:[13,1,1,""],plot_sets:[13,1,1,""]},"pyFTS.partitioners.parallel_util":{explore_partitioners:[13,1,1,""]},"pyFTS.partitioners.partitioner":{Partitioner:[13,2,1,""]},"pyFTS.partitioners.partitioner.Partitioner":{build:[13,3,1,""],extractor:[13,4,1,""],fuzzyfy:[13,3,1,""],get_name:[13,3,1,""],lower_set:[13,3,1,""],membership_function:[13,4,1,""],name:[13,4,1,""],partitions:[13,4,1,""],plot:[13,3,1,""],plot_set:[13,3,1,""],prefix:[13,4,1,""],setnames:[13,4,1,""],transformation:[13,4,1,""],type:[13,4,1,""],upper_set:[13,3,1,""],variable:[13,4,1,""]},"pyFTS.probabilistic":{ProbabilityDistribution:[14,0,0,"-"],kde:[14,0,0,"-"]},"pyFTS.probabilistic.ProbabilityDistribution":{ProbabilityDistribution:[14,2,1,""]},"pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution":{append:[14,3,1,""],append_interval:[14,3,1,""],averageloglikelihood:[14,3,1,""],bins:[14,4,1,""],build_cdf_qtl:[14,3,1,""],crossentropy:[14,3,1,""],cumulative:[14,3,1,""],density:[14,3,1,""],differential_offset:[14,3,1,""],empiricalloglikelihood:[14,3,1,""],entropy:[14,3,1,""],expected_value:[14,3,1,""],kullbackleiblerdivergence:[14,3,1,""],labels:[14,4,1,""],plot:[14,3,1,""],pseudologlikelihood:[14,3,1,""],quantile:[14,3,1,""],set:[14,3,1,""],type:[14,4,1,""],uod:[14,4,1,""]},"pyFTS.probabilistic.kde":{KernelSmoothing:[14,2,1,""]},"pyFTS.probabilistic.kde.KernelSmoothing":{h:[14,4,1,""],kernel:[14,4,1,""],kernel_function:[14,3,1,""],probability:[14,3,1,""]},pyFTS:{benchmarks:[3,0,0,"-"],common:[4,0,0,"-"],conf:[2,0,0,"-"],data:[5,0,0,"-"],hyperparam:[6,0,0,"-"],models:[7,0,0,"-"],partitioners:[13,0,0,"-"],probabilistic:[14,0,0,"-"]}},objnames:{"0":["py","module","Python module"],"1":["py","function","Python function"],"2":["py","class","Python class"],"3":["py","method","Python method"],"4":["py","attribute","Python attribute"]},objtypes:{"0":"py:module","1":"py:function","2":"py:class","3":"py:method","4":"py:attribute"},terms:{"261459a0":5,"57a":5,"5egspc":5,"boolean":[3,4,13],"case":4,"class":[3,4,7,8,9,10,11,12,13,14,15],"default":[3,4,5],"enum":12,"fa\u00e7ad":[3,4],"final":4,"float":[3,4,5],"function":[3,4,6,11,13,14,15],"guimar\u00e3":[0,7],"h\u00e9non":5,"import":[4,10,15],"int":[7,15],"na\u00efv":3,"new":[4,8,9,10],"organiza\u00e7\u00e3o":5,"petr\u00f4nio":7,"r\u00f6ssler":5,"return":[3,4,5,6,7,8,9,10,11,12,13,14],"short":[4,7,15],"true":[3,4,9],"try":4,"var":[5,10],"while":4,And:3,FTS:[0,3,4,6,7,8,9,10,11,12],For:3,LHS:[4,7,11],RHS:[4,7,10,11],The:[3,4,5,6,8,9,10,13,14,15],Then:[3,15],There:15,These:[0,15],Use:12,abdullah:[7,15],acc:4,accept:4,account:14,accuraci:[3,6],acf:3,actual:[4,14],adapt:4,adaptiveexpect:4,add:[3,4,11],add_new_pwflgr:7,added:4,address:[3,4],affect:11,after:5,age:4,aged:4,aggreg:[4,8],ahead:[3,4,7,8,9,10,11,12,15],ahed:15,airlin:5,airpasseng:[1,2],alabama:5,alia:[3,4,10],all:[3,4,8,14,15],allmethodensembleft:8,almost:15,alpha:[4,6,7,8,12],alpha_cut:[4,6],alreadi:5,also:[0,4,15],ambientai:5,analysi:3,analytic_tabular_datafram:3,analytical_data_column:3,angela:4,anonym:13,anoth:9,api:[0,4],append:[4,8,10,14],append_interv:14,append_lh:[7,11],append_model:8,append_rh:[4,7,10,11,12],append_set:[4,10],append_transform:4,append_vari:10,appendchild:4,appl:[7,13,15],appli:[3,4,10,13,14],apply_inverse_transform:[4,10],apply_transform:[4,10],approach:[3,13,15],arg:11,argument:[3,4],arima:[1,2],arima_model:3,around:4,arrai:[4,5,11,12],artifici:[1,2],ascend:3,aspx:5,assert:14,assign:[4,14],assoc:3,associ:5,ata:3,atmospher:5,atribut:3,attibut:4,attractor:5,auto:13,auto_upd:[4,9],autocorrel:3,autom:5,automat:4,auxiliar:3,auxiliari:14,averag:[3,5,14],averageloglikelihood:14,avg:5,axes:11,axi:[3,4,13,14],azim:3,bar:3,base:[3,4,7,8,9,10,11,12,13,14,15],base_dataframe_column:3,batch:[4,9],batch_sav:4,batch_siz:9,befor:15,being:3,bell:4,bellmf:4,belo:[0,5],belog:4,below:15,benchmark:[1,2,4,6],benchmark_method:3,benchmark_methods_paramet:3,benchmark_model:3,benchmark_onli:4,bestsplit:13,better:15,between:[3,4,9,14],bill:4,bin:[3,14],bisect:4,bitcoin:[1,2],bivari:5,black:14,blue:3,both:4,bound:[4,5,7,11,13],box:[3,4,15],boxcox:4,boxljungstatist:3,boxpiercestatist:3,brasil:5,brasilia:5,brazil:[0,8],brazilian:[0,8],brier:3,brier_scor:3,btc:5,build:[9,10,11,12,13],build_cdf_qtl:14,build_method:3,build_tree_without_ord:4,built:13,buseco:5,busi:5,c_mean:13,calcul:[4,10,11],call:[4,9,10],camwa:13,can:[3,4,15],capabl:3,capit:5,cast_dataframe_to_synthet:3,cast_dataframe_to_synthetic_interv:3,cast_dataframe_to_synthetic_point:3,cast_dataframe_to_synthetic_probabilist:3,ccst:5,center:4,centroid:[4,12],certain:14,chang:[5,13,15],chao:5,chaotic:[1,2],characterist:15,cheap:0,check:[4,5,15],check_bound:[4,11],check_bounds_index:[4,11],check_ignore_list:3,check_replace_list:3,chen:[1,2,10,12,15],cheng:[1,2,13,15],chi:3,chi_squar:3,chia:7,child:4,chissom:[7,15],clear:4,clip:4,clone:15,clone_paramet:[4,10],cluster:[3,4,10],cluster_method:[6,10],cluster_param:10,clusteredmvft:10,cmap:3,cmean:[1,2],cmeanspartition:[13,15],cmsft:[2,7],cmvft:[2,7],code:15,coeffici:[3,5],colab:15,colabor:0,color:[3,11,14],column:[4,10],com:[5,15],common:[1,2,3,6,7,8,9,13,15],commun:5,compar:3,compare_residu:3,comparemodelsplot:3,comparemodelst:3,complet:5,complic:5,compon:8,composit:[1,2,5,10],compress:5,comput:[7,8,13,15],computation:0,condens:3,condit:3,conditional_perturbation_factor:11,conditionalvarianceft:11,conf:[0,1],confer:7,configure_lag:7,congress:8,conn:[3,6],connect:[3,6],consid:4,const_t:11,constant:5,contain:[3,4,10,13,15],content:[0,1],context:13,contextu:12,contextualmultiseasonalft:12,contextualseasonalflrg:12,contin:[9,14],continu:[3,5,14],control:5,convent:[7,11,12],conventionalflrg:7,conventionalft:[7,10],conventionalnonstationaryflrg:11,copi:4,cost:[13,15],count:[4,14],counter:13,covavg:3,coverag:3,covstd:3,cox:[4,15],creat:[3,4,6,8,13,15],create_benchmark_t:3,create_hyperparam_t:6,criteria:3,cross:[4,14],crossentropi:14,crp:3,crps1avg:3,crps1std:3,crps2avg:3,crps2std:3,crps_distr:3,crps_interv:3,crpsavg:3,crpsstd:3,csv:5,cumul:14,current:3,current_milli_tim:4,cut:[4,6],cvft:[2,7],dado:[4,5,13],dai:5,daili:5,data:[0,1,2,3,4,6,7,8,9,10,11,12,13,14,15],data_column:3,data_field:12,data_label:10,data_point:10,databas:[3,6],datafram:[3,4,5,10,12],dataframeseasonalindex:12,dataset:[1,2,3,4,6],datasetnam:6,date:[3,12],date_field:12,date_part:12,datepart:12,datetim:12,datetimeseasonalindex:12,david:4,day_of_month:12,day_of_week:12,day_of_year:12,dealer:5,dec:13,decemb:5,decis:3,decompress:5,defin:[3,6],defuzzyf:15,deg:11,delet:4,deltadist:13,demo:15,densiti:[3,14],departa:0,depend:[3,4,15],dependeci:4,deri:[7,15],design:[3,4,6],detail:4,determin:3,determinist:[5,13],develop:[0,15],deviat:3,dict:[3,4],dict_individu:6,dictionari:[3,4],differenti:[4,5,14,15],differential_offset:14,diffus:[7,15],dill:4,dimension:5,directli:[4,15],discours:[3,4,11,12,13,14,15],discret:14,disk:[4,13],dispi:[3,4],displac:11,displai:3,distanc:[3,13],distribut:[3,4,5,7,8,14],distributed_predict:4,distributed_train:4,diverg:14,dji:5,dkl:14,dnf:5,document:0,doi10:7,doi:[0,3,5,13],dollar:[7,15],don:5,dow:5,dowjon:[1,2],download:5,draw_sets_on_axi:4,dure:[3,4],dynam:5,each:[3,4,5,8,9,10,15],easi:[0,4],easier:4,edu:5,edward:5,efendi:[7,15],effect:[13,15],effici:4,electr:[0,7,15],eletr:5,elev:3,empir:[13,14],empiricalloglikelihood:14,enayatifar:[7,15],end:11,endogen:10,energi:[7,15],engin:0,enrol:[1,2,7,12,15],ensembl:[2,4,7],ensembleft:8,entir:4,entropi:[1,2,14,15],entropypartition:[13,15],enumer:12,enumerate2:4,environ:4,epanechnikov:14,equal:[3,4,7,8,9,10,11,12,15],equat:5,error:3,espaciai:5,esrl:5,estim:[3,14],etc:[4,15],eth:5,ethereum:[1,2],eur:[1,2],eurgbp:5,eurusd:5,even:[12,13],exact:4,exampl:0,except:4,exchang:[5,7,15],execut:[3,6],exist:5,expect:[4,7,14],expected_valu:14,experi:3,expert:[0,7,15],explain:[4,7],exploit:0,explore_partition:13,exponenti:[7,11,15],exponentiali:7,exponentialyweightedflrg:7,exponentialyweightedft:7,express:3,extens:10,extern:[3,4],externalforecast:3,externalmodel:3,extract:[3,5,13],extract_measur:3,extractor:13,extremum:8,facil:[3,4,5,6,13],fall:3,fals:[3,4,7,10,11,13],fcm:[1,2],fcmpartition:[13,15],feder:0,fetch:4,field:[5,12],fig:[3,4,11],figur:4,file:[3,4,5,11,13],file_analyt:3,file_path:4,file_synthet:3,filenam:[3,4,5],filenem:[3,6],filesystem:4,fill:3,filter:3,financ:5,find:[4,12,13],find_best:3,find_g:4,find_gt:4,find_l:4,find_lt:4,first:[3,4,7,11,12],fit:[3,4,7,8,9,10,11,12],five:4,flag:4,flashquot:5,flat:4,flow:5,flr:[1,2,7,11,12],flr_membership_matrix:7,flrg:[1,2,7,12],flrg_lhs_conditional_prob:7,flrg_lhs_unconditional_prob:7,flrg_rhs_conditional_prob:7,flrgtree:4,flrgtreenod:4,foreast:3,forecast:[3,4,7,8,9,10,11,12,13,15],forecast_ahead:[4,7,10,12],forecast_ahead_distribut:[3,4,7,8],forecast_ahead_interv:[3,4,7,8],forecast_distribut:[3,4,7,8],forecast_interv:[3,4,7,8,11],forex:5,fork:0,format:[3,6],format_data:10,forward:4,found:[4,15],frederico:[0,7],frequenc:14,from:[0,3,4,5,7,10,13,14,15],fset:[7,10],fts:[1,2,3,7,8,9,10,11,12],fts_method:[4,9,10],fts_param:[9,10],fuzz:7,fuzzi:[2,4,7,8,10,11,12,13],fuzzif:[13,15],fuzzifi:[4,11],fuzzy_cmean:13,fuzzy_dist:13,fuzzy_set:4,fuzzydata:4,fuzzyf:[4,15],fuzzyfi:[4,10,13],fuzzyfy_inst:[4,10],fuzzyfy_instance_clust:10,fuzzyfy_seri:4,fuzzyfy_series_old:4,fuzzyseri:11,fuzzyset:[1,2,7,10,11,12],gadelha:[0,7],gani:[7,15],garibaldi:11,gaussian:[4,5],gaussmf:4,gbp:[1,2],gbpusd:5,gcos_wgsp:5,gener:[4,5,13,15],generate_flr:10,generate_flrg:[7,10,11,12],generate_flrg_fuzzyfi:7,generate_gaussian_linear:5,generate_high_order_recurrent_flr:4,generate_indexed_flr:4,generate_lhs_flr:10,generate_lhs_flrg:7,generate_lhs_flrg_fuzzyfi:7,generate_non_recurrent_flr:4,generate_recurrent_flr:4,generate_uniform_linear:5,gerai:0,get:[3,4,5],get_benchmark_interval_method:3,get_benchmark_point_method:3,get_benchmark_probabilistic_method:3,get_data:[5,12],get_data_by_season:12,get_datafram:5,get_dataframe_from_bd:3,get_distribution_interquantil:8,get_distribution_statist:3,get_fuzzyset:4,get_index:12,get_index_by_season:12,get_interv:8,get_interval_method:3,get_interval_statist:3,get_kei:[4,7,11,12],get_low:[4,7,11],get_maximum_membership_fuzzyset:4,get_maximum_membership_fuzzyset_index:4,get_membership:[4,7,10,11],get_midpoint:[4,7,10,11,12],get_models_forecast:8,get_nam:13,get_point:8,get_point_method:3,get_point_multivariate_method:3,get_point_statist:3,get_polynomial_perturb:11,get_probabilistic_method:3,get_season_by_index:12,get_season_of_data:12,get_sequence_membership:7,get_uod:4,get_upp:[4,7,11],getchildren:4,getstr:4,git:15,github:[0,15],given:[3,4,10,11,13,14],glass:[1,2],good:15,googl:15,gov:5,grant_bound:4,greater:4,grid:[1,2,3,12],gridpartition:[3,13,15],gridsearch:[1,2],group:[3,4,7,10,11,12],hand:4,handl:[4,7],hard:4,harmoni:[7,15],has_interval_forecast:4,has_point_forecast:4,has_probability_forecast:4,has_season:4,head:0,heavysid:3,heavyside_cdf:3,height:13,henon:[1,2],here:15,heteroskedast:11,high:[3,4,7,10,11],highorderflrg:7,highorderft:[7,11],highordernonstationaryflrg:11,highordernonstationaryft:11,histogram:14,histori:5,hoang:7,hoft:[1,2,11],honsft:[2,7],horizon:[3,4],horizont:[0,5],hossein:7,hour:[3,12],hour_of_dai:12,hour_of_month:12,hour_of_week:12,hour_of_year:12,hourli:5,http:[0,5,15],http_server:4,huarng:[1,2,15],huarngpartition:[13,15],human:0,hwang:[1,2],hybrid:[7,15],hyndman:5,hyperparam:[1,2],hyperparamet:6,identifi:[3,4,6,7,11,12],ieee:[7,11],ifmg:0,ifnmg:0,ift:[1,2],ignor:[3,12],imag:[4,13],implement:[4,12,15],improv:[7,13,15],improvedweightedflrg:7,improvedweightedft:7,inc:[3,4],increment:[2,3,4,5,7,14],ind:12,indentifi:[3,6],index:[3,4,5,7,8,10,12],index_field:12,index_season:12,index_seri:5,indexedflr:4,indic:[3,4,5],individu:6,inequ:3,infer:5,infil:3,inform:[3,4,14],informationgain:13,initi:[4,5],initial_valu:5,inmet:[1,2],innov:[7,15],inp:5,input:[4,7,10,11,14],insert:[3,4,6],insert_benchmark:3,insert_hyperparam:6,insert_right:4,insid:[3,4,12,14],inst:[4,11],instal:0,instanc:[10,11,13,15],instead:4,instituit:0,institut:0,instituto:5,integ:[3,4],integr:5,intel:[7,15],intellig:[7,8],intend:0,intern:7,internet:5,interpol:3,interpret:4,interv:[3,4,7,8,9,11,13,14,15],interval_dataframe_analytic_column:3,interval_dataframe_synthetic_column:3,interval_heurist:7,interval_method:8,interval_quantil:7,interval_to_interv:3,intervalar:15,intervalft:7,introduc:15,introspect:4,invers:[4,15],ipynb:15,is_high_ord:4,is_multivari:4,ismail:[7,15],ismailefendi:[1,2],isol:13,item:4,itemgett:4,iter:[4,5],its:[5,7,10,12,13,15],ixic:5,janeiro:8,januari:5,jaroszewski:11,javedani:7,jeng:7,job:[3,6],jonathan:11,jone:[4,5],journal:5,jun:[13,15],jupyt:15,kde:[1,2],kei:[3,4],kernel:14,kernel_funct:14,kernelsmooth:14,knearestneighbor:3,knn:[1,2],kullback:14,kullbackleiblerdiverg:14,kwarg:[3,4,6,7,8,9,10,11,12,13,14],lab:0,label:[3,14],lag:[4,5,6,15],lambda:4,largest:4,last:4,later:15,layman:0,lcolor:3,learn:9,lee:7,left:4,legend:[3,4],leibler:14,len_tot:4,length:[3,4,7,8,9,10,11,12,13,15],less:4,lett:5,level:4,lgd:4,lhs_conditional_prob:7,librari:[2,5],like:[4,15],likelihood:14,limit:4,lin:13,linear:[5,11],linearmodel:3,linearseasonalindex:12,linewidth:3,linspac:5,list:[3,4,5,7,8,9,10,11,12,13,14,15],ljung:3,lo_param:3,load:[4,5,7,15],load_env:4,load_obj:4,local:5,locat:[4,11],location_param:11,log:[4,14],logic:[4,7,10,11,12],logist:[4,5],logistic_map:[1,2],look:4,lookup:4,lorentz:[1,2],lorenz:5,loss:3,lower:[4,5,7,11,13],lower_set:13,mackei:[1,2],mackey_glass:5,mai:5,main:15,malaysia:[1,2,7,15],mandatori:4,mani:15,map:[3,5],mape:3,mape_interv:3,marcin:11,market:5,mass:4,match:4,math:[5,13],mathemat:5,matplotlib:[4,13],max:4,max_inc:5,max_ini:5,max_lag:[3,4,7,8,9,10,11,12],maxim:4,maximum:[4,13],mean:[3,4,5,8],measur:[1,2,6],mech:[7,15],median:8,membership:[1,2,6,7,10,11,13,15],membership_funct:13,memori:[4,9],merg:4,meta:[8,9,10],meteorologia:5,method:[0,3,4,5,6,7,8,9,10,11,12,13,15],metodo_clust:[],metric:3,mft:3,midpoint:[4,7,10,11],min:[4,14],min_inc:5,min_ini:5,min_ord:4,mina:0,mind:0,ming:7,minim:[3,4,7,8,9,10,11,12],minimum:[4,15],minute_of_dai:12,minute_of_hour:12,minute_of_month:12,minute_of_week:12,minute_of_year:12,mix:8,mode:4,model:[0,1,2,3,4,5,6,13,15],modelo:3,models_fo:3,models_ho:3,modul:[0,1,15],monash:5,month:12,monthli:[3,5],more:15,most:[9,10,15],move:3,msft:[2,7],mu_inc:5,mu_ini:5,much:4,multi:[3,4,7,10,12],multiseason:[2,7],multiseasonalft:12,multivari:[2,3,4,5,7,13],multivariatefuzzyset:10,musikasuwan:11,mvft:[2,7],nacion:5,naiv:[1,2],name:[3,4,5,6,8,10,11,12,13],nasdaq:[1,2],nation:5,nativ:[4,12],natur:5,nbin:[4,7],nbsp:0,ndata:[3,4,7,10,11],nearest:3,need:4,neighbor:3,next:[4,15],nice:4,noaa:5,node:[3,4],nois:11,noise_param:11,non:[3,4,11,12,15],none:[3,4,5,8,9,10,11,12,13,14],nonperiod:5,nonstationari:[2,4,7],nonstationaryflrg:11,nonstationaryft:11,norm:7,normal:[8,15],north:0,norton:5,notebook:15,noth:15,nov:[13,15],now:4,npart:[11,13],nsft:[2,7],num:5,num_batch:4,num_season:12,number:[3,4,5,6,7,8,10,12,13,14,15],numer:15,numpi:[4,5],obj:[3,4,13],object:[3,4,7,8,10,12,13,14],objectsist:3,occur:4,occurr:4,old:4,older:4,oldest:4,onc:4,one:[3,4,6,7,8,9,10,11,12,14,15],onli:4,onlin:9,only_lin:11,open:[3,6],open_benchmark_db:3,open_hyperparam_db:6,oper:[4,15],operation_matrix:7,option:[3,4,8],order:[3,4,6,7,10,11,12,15],ordered_set:[4,11],ordin:4,org:[0,5],origin:[3,4,15],original_max:4,original_min:4,oscil:5,other:[3,4,8,10],otherwis:3,out:15,outfil:3,output:[13,15],over:4,overlap:15,own:10,p500:5,packag:[0,1],page:0,pair:5,panda:[3,4,5,12],par1:11,par2:11,parallel_util:[1,2],param:[3,4,10,11,12],paramet:[3,4,5,6,7,8,9,10,11,12,13,14,15],parametr:15,part:11,partit:[3,4,6,11,12,13,15],partition:[1,2,3,4,6,7,8,9,10,15],partition_funct:[4,7],partitioner_method:9,partitioner_param:9,partitioners_method:3,partitioners_model:3,pass:3,passeng:5,past:4,path:[3,4,13],pattern:4,pct:11,pdf:14,percent:3,percentag:3,percentu:[3,4],perform:[3,6,11,12,13,15],perform_loc:11,perform_width:11,period:11,persist:4,persist_env:4,persist_obj:4,person:[4,5],pertub:11,perturb:[2,7],perturbate_paramet:11,perturbation_factor:11,perturbation_factors__old:11,pesquisa:5,pftsexploreorderandpartit:3,php:5,phy:[5,7,15],physiolog:5,pictur:[3,4],pierc:3,pinbal:3,pinball_mean:3,pip:15,plambda:4,plot:[3,12,13,14],plot_compared_intervals_ahead:3,plot_compared_seri:3,plot_dataframe_interv:3,plot_dataframe_interval_pinbal:3,plot_dataframe_point:3,plot_dataframe_probabilist:3,plot_density_rectang:3,plot_distribut:3,plot_interv:3,plot_partition:13,plot_point:3,plot_probability_distribut:3,plot_residu:3,plot_rul:4,plot_set:[11,13],plot_sets_condit:11,plotcompar:3,plotforecast:3,plotresidu:3,pmf:[3,13],pmf_to_cdf:3,point:[3,4,7,8,9,10,11,12,14,15],point_dataframe_analytic_column:3,point_dataframe_synthetic_column:3,point_expected_valu:7,point_heurist:7,point_method:8,point_to_interv:3,poit:3,poly_width:11,polynomi:11,polynomialnonstationarypartition:11,poor:5,por:3,posit:[4,12],post:4,posterior:3,postprocess:[4,15],power:[4,7,15],pprint:4,pre:4,prebuilt:3,predict:[3,4,7,8,11,15],prefix:13,preprocess:[4,10,12,15],primari:3,primit:13,print:3,print_distribution_statist:3,print_interval_statist:3,print_point_statist:3,probabil:3,probabilist:[1,2,3,4,7,8,15],probabilistic_dataframe_analytic_column:3,probabilistic_dataframe_synthetic_column:3,probabilisticweightedflrg:7,probabilisticweightedft:7,probabilitydist:3,probabilitydistribut:[1,2,3,4,7,8],probabl:[3,4,7,8,14],problem:7,procedur:[3,4],process:[3,4,5],process_common_data:3,process_interval_job:3,process_job:6,process_point_job:3,process_probabilistic_job:3,product:[5,7,15],prof:0,progress:3,project:[13,15],propos:15,provid:[0,4,8,15],psd:5,pseudo:14,pseudologlikelihood:14,pwflrg:7,pwft:[1,2],python:[2,15],q05:3,q25:3,q75:3,q95:3,quantil:[3,8,14],quantile_regress:3,quantileregress:3,quantreg:[1,2],queri:3,quick:0,quot:5,quotat:5,rais:4,random_walk:5,rang:[3,15],rank:3,rate:[7,15],read:5,readabl:0,real:[4,15],recent:[9,10,15],record:4,recreat:9,recurr:4,red:3,reference_data:3,refin:[7,15],regress:3,relat:14,relationship:[4,7,10,11,12],remov:4,ren:7,replac:3,repo:15,repr:4,repres:[3,4,7,8,14],represent:15,research:[0,15],residu:3,residualanalysi:[1,2],resolut:3,respect:[4,14],respons:12,result:[3,4,6],retrain:[2,7],revers:4,review:[3,15],rhs_conditional_prob:7,rhs_unconditional_prob:7,right:4,ringgit:[7,15],rio:8,rmse:3,rmse_interv:3,rmseavg:3,rmsestd:3,rng:11,robert:5,roger:4,roi:4,root:3,rossler:[1,2],round:13,rule:[3,4,10,15],rules_by_axi:4,run:3,run_interv:3,run_point:3,run_probabilist:3,sadaei:[1,2,15],salang:11,same:[4,8],sampl:[3,5,7,15],sampler:8,save:[3,4,11,13],save_best:3,save_dataframe_interv:3,save_dataframe_point:3,save_dataframe_probabilist:3,save_model:4,scale:[3,4,15],scale_down:11,scale_param:3,scale_up:11,scan:4,scheme:[3,6,15],scienc:5,scientist:0,score:3,search:[0,4,7,15],season:[2,3,4,7,8,15],seasonalensembleft:8,seasonalflrg:12,seasonalft:12,seasonalindex:[2,7],second:12,second_of_dai:12,second_of_hour:12,second_of_minut:12,secur:5,selecaosimples_menorrms:3,select:5,sep:5,separ:5,sequenc:4,seri:[1,2,3,4,7,8,9,10,11,12,13],set:[3,4,6,7,10,11,12,13,14,15],set_data:12,set_lh:10,set_ord:4,set_rh:10,set_transform:8,setnam:13,sever:[3,8,13],severiano:7,sft:[2,7],shape:4,share:8,sharp:3,sharpavg:3,sharpstd:3,shortnam:4,show:[4,13],show_and_save_imag:4,shyi:7,side:4,sigma_inc:5,sigma_ini:5,sigmf:4,sigmoid:4,silva:[0,7,8],simpl:[0,5,12],simple_model_predict:4,simple_model_train:4,simplenonstationary_gridpartitioner_build:11,simplenonstationarypartition:11,simpler:4,simplesearch_rms:3,singl:[4,13],single_plot_residu:3,singleton:[1,2,4],singletonpartition:13,sistema:5,size:[3,4,11,13],slice:4,slide:[3,4],sliding_window:4,sliding_window_benchmark:3,smape:3,smith:4,smooth:[4,15],social:[13,15],solar:7,sonda:[1,2],song:[1,2,12,15],sort:4,sort_ascend:3,sort_column:3,sortedcollect:[1,2],sourc:[3,4,5,6,7,8,9,10,11,12,13,14],sp500:5,space:3,specif:[3,4,7,8,9,10,11,12],split:[3,4,13],splitabov:13,splitbelow:13,splite:15,sql:3,sqlite3:[3,6],sqlite:[3,6],squar:3,ssci:7,standard:[3,5,15],start:[0,3,4,7,10,11,12],start_dispy_clust:4,stat:[3,7,15],station:5,stationari:11,statist:[0,3],statsmodel:3,step:[3,4,7,8,9,10,11,12,15],steps_ahead:[3,4],stochast:5,stock:5,stop_dispy_clust:4,store:[3,4,6],strang:5,string:[4,10,13],strip_datepart:12,structur:[4,12],student:0,submodul:[0,1],subpackag:[0,1],suitabl:0,sum:7,sunspot:[1,2],superset:4,support:4,symbol:5,symmetr:3,symposium:7,synthet:[3,5],syst:[7,12,13,15],system:[5,7,11],tabl:[3,6],tabular_dataframe_column:3,tag:[3,6],taiex:[1,2,7,15],taiwan:5,take:15,tam:[3,11,13,14],target:3,target_vari:4,tau:[3,5,14],technol:[13,15],tempeatur:5,tempor:[4,12,15],term:[3,7,15],test:[3,4,6,15],test_data:3,than:[4,15],thei:4,theil:3,theilsinequ:3,theoret:3,theori:15,thi:[0,4,5,7,10,11,12,13,14,15],thoma:4,those:4,thres1:13,thres2:13,threshold:13,through:5,time:[1,2,3,4,7,8,9,10,11,12,13],time_from:3,time_to:3,timegridpartition:12,times2:3,timeseri:5,titl:[3,13,14],tool:[0,15],total:5,tradit:7,train:[3,4,6,7,8,9,10,11,12,13],train_data:[3,8],train_individual_model:8,train_method:4,train_paramet:4,transact:11,transform:[1,2,3,6,10,11,12,13,15],transformations_param:4,transit:[4,15],translat:15,trapezoid:[4,13,15],trapmf:4,tree:[1,2],trend:[7,15],trendweightedflrg:7,trendweightedft:7,triangular:4,trigger:4,trimf:4,tsa:3,tsdl:5,tun:6,tupl:[3,4,6],two:5,twse:5,type:[3,4,5,12,13,14,15],typeonlegend:3,uavg:3,ufmg:0,under:4,unified_scaled_interv:3,unified_scaled_interval_pinbal:3,unified_scaled_point:3,unified_scaled_probabilist:3,uniform:5,uniqu:[4,7,8,11,12],uniquefilenam:4,unit:12,univari:5,univers:[0,3,4,5,11,12,13,14,15],unpack_arg:11,uod:[3,4,6,7,14],uod_clip:4,up_param:3,updat:9,update_model:7,update_uod:8,updateuod:[4,10],upper:[4,5,7,11,13],upper_set:13,url:[0,3,5],usa:5,usag:0,usd:[1,2],use:[0,4],used:[3,4,6,7,8,13,15],user:[3,6],using:[4,7,9,13,15],ustatist:3,ustd:3,usual:[4,15],util:[1,2,7],val:13,valid:4,valu:[3,4,5,6,7,8,9,10,11,12,14,15],valueerror:4,variabl:[2,4,7,13],varianc:[4,5],vector:4,veri:[5,7],verif:3,visualize_distribut:7,vmax:5,vmin:5,vol:[7,12,13,15],want:0,weather:3,weight:[5,7,10,15],weightedflrg:[7,10],weightedft:7,weightedhighorderflrg:7,weightedhighorderft:7,weightedmvft:10,when:[4,9,10],where:[3,4,7,10,12],which:[3,4,6,15],white_nois:5,whose:0,width:[11,13,14],width_param:11,window:[3,4,9],window_index:11,window_kei:3,window_length:9,window_s:11,windows:[3,4],winkler:3,winkler_mean:3,winkler_scor:3,without:4,wmvft:[2,7],word:[3,6],work:4,wrap:[3,8,9],www:5,xiii:8,yahoo:5,year:12,yearli:5,yeh:[13,15],you:4,young:4,younger:4,youngest:4,zenodo:0},titles:["pyFTS - Fuzzy Time Series for Python","pyFTS","pyFTS package","pyFTS.benchmarks package","pyFTS.common package","pyFTS.data package","pyFTS.hyperparam package","pyFTS.models package","pyFTS.models.ensemble package","pyFTS.models.incremental package","pyFTS.models.multivariate package","pyFTS.models.nonstationary package","pyFTS.models.seasonal package","pyFTS.partitioners package","pyFTS.probabilistic package","pyFTS Quick Start"],titleterms:{FTS:15,airpasseng:5,arima:3,artifici:5,benchmark:3,bitcoin:5,chaotic:5,chen:7,cheng:7,cmean:13,cmsft:12,cmvft:10,common:[4,5,10,11,12],composit:4,conf:2,content:[2,3,4,5,6,7,8,9,10,11,12,13,14],cvft:11,data:5,dataset:5,dowjon:5,enrol:5,ensembl:8,entropi:13,ethereum:5,eur:5,exampl:15,fcm:13,flr:[4,10],flrg:[4,10,11],fts:4,fuzzi:[0,15],fuzzyset:4,gbp:5,glass:5,grid:13,gridsearch:6,henon:5,hoft:7,honsft:11,how:[0,15],huarng:13,hwang:7,hyperparam:6,ift:7,increment:9,index:0,inmet:5,instal:15,ismailefendi:7,kde:14,knn:3,librari:0,logistic_map:5,lorentz:5,mackei:5,malaysia:5,measur:3,membership:4,model:[7,8,9,10,11,12],modul:[2,3,4,5,6,7,8,9,10,11,12,13,14],msft:12,multiseason:8,multivari:10,mvft:10,naiv:3,nasdaq:5,nonstationari:11,nsft:11,packag:[2,3,4,5,6,7,8,9,10,11,12,13,14],parallel_util:13,partition:[11,12,13],perturb:11,probabilist:14,probabilitydistribut:14,pwft:7,pyft:[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],python:0,quantreg:3,quick:15,refer:[0,15],residualanalysi:3,retrain:9,rossler:5,sadaei:7,season:12,seasonalindex:12,seri:[0,5,15],sft:12,singleton:13,sonda:5,song:7,sortedcollect:4,start:15,submodul:[2,3,4,5,6,7,8,9,10,11,12,13,14],subpackag:[2,7],sunspot:5,taiex:5,time:[0,5,15],transform:4,tree:4,usag:15,usd:5,util:[3,4,6,11,13],variabl:10,what:[0,15],wmvft:10}}) |