pyFTS/hwang.py

39 lines
1.3 KiB
Python

import numpy as np
from pyFTS.common import FuzzySet,FLR,Transformations
import fts
class HighOrderFTS(fts.FTS):
def __init__(self, order, name):
super(HighOrderFTS, self).__init__(order, name)
def forecast(self, data, t):
cn = np.array([0.0 for k in range(len(self.sets))])
ow = np.array([[0.0 for k in range(len(self.sets))] for z in range(self.order - 1)])
rn = np.array([[0.0 for k in range(len(self.sets))] for z in range(self.order - 1)])
ft = np.array([0.0 for k in range(len(self.sets))])
for s in range(len(self.sets)):
cn[s] = self.sets[s].membership(data[t])
for w in range(self.order - 1):
ow[w, s] = self.sets[s].membership(data[t - w])
rn[w, s] = ow[w, s] * cn[s]
ft[s] = max(ft[s], rn[w, s])
mft = max(ft)
out = 0.0
count = 0.0
for s in range(len(self.sets)):
if ft[s] == mft:
out = out + self.sets[s].centroid
count = count + 1.0
return out / count
def train(self, data, sets):
self.sets = sets
def predict(self, data, t):
return self.forecast(data, t)
def predictDiff(self, data, t):
return data[t] + self.forecast(Transformations.differential(data), t)