77 lines
2.1 KiB
Python
77 lines
2.1 KiB
Python
import numpy as np
|
||
import math
|
||
import random as rnd
|
||
import functools, operator
|
||
from pyFTS.common import FuzzySet, Membership
|
||
|
||
|
||
# C. H. Cheng, R. J. Chang, and C. A. Yeh, “Entropy-based and trapezoidal fuzzification-based fuzzy time series approach for forecasting IT project cost,”
|
||
# Technol. Forecast. Social Change, vol. 73, no. 5, pp. 524–542, Jun. 2006.
|
||
|
||
def splitBelow(data,threshold):
|
||
return [k for k in data if k <= threshold]
|
||
|
||
def splitAbove(data,threshold):
|
||
return [k for k in data if k > threshold]
|
||
|
||
def PMF(data, threshold):
|
||
a = sum([1.0 for k in splitBelow(data,threshold)])
|
||
b = sum([1.0 for k in splitAbove(data, threshold)])
|
||
l = len(data)
|
||
return [a / l, b / l]
|
||
|
||
|
||
def entropy(data, threshold):
|
||
pmf = PMF(data, threshold)
|
||
return - sum([pmf[0] * math.log(pmf[0]), pmf[1] * math.log(pmf[1])])
|
||
|
||
|
||
def informationGain(data, thres1, thres2):
|
||
return entropy(data, thres1) - entropy(data, thres2)
|
||
|
||
|
||
def bestSplit(data, npart):
|
||
if len(data) < 2:
|
||
return None
|
||
count = 2
|
||
ndata = list(set(data))
|
||
ndata.sort()
|
||
threshold = 0
|
||
while informationGain(data, ndata[count - 1], ndata[count]) <= 0:
|
||
threshold = ndata[count]
|
||
count += 1
|
||
|
||
rem = npart % 2
|
||
|
||
if (npart - rem)/2 > 1:
|
||
p1 = splitBelow(data,threshold)
|
||
p2 = splitAbove(data,threshold)
|
||
|
||
if len(p1) > len(p2):
|
||
np1 = (npart - rem)/2 + rem
|
||
np2 = (npart - rem)/2
|
||
else:
|
||
np1 = (npart - rem) / 2
|
||
np2 = (npart - rem) / 2 + rem
|
||
|
||
return [ threshold, bestSplit(p1, np1 ), bestSplit(p2, np2 ) ]
|
||
|
||
else:
|
||
return threshold
|
||
|
||
def EntropyPartitionerTrimf(data, npart, prefix="A"):
|
||
dmax = max(data)
|
||
dmax += dmax * 0.10
|
||
dmin = min(data)
|
||
dmin -= dmin * 0.10
|
||
|
||
sets = [dmin, bestSplit(data, npart), dmax]
|
||
|
||
sets.sort()
|
||
for c in np.arange(1, len(sets) - 1):
|
||
sets.append(FuzzySet.FuzzySet(prefix + str(c), Membership.trimf,
|
||
[round(sets[c - 1], 3), round(sets[c], 3),
|
||
round(sets[c + 1], 3)],round(sets[c], 3)))
|
||
|
||
return sets
|