pyFTS/sadaei.py
Petrônio Cândido de Lima e Silva 9af879e195 - Bugfixes and improvements on benchmarks
2017-05-24 00:31:05 -03:00

101 lines
3.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
First Order Exponentialy Weighted Fuzzy Time Series by Sadaei et al. (2013)
H. J. Sadaei, R. Enayatifar, A. H. Abdullah, and A. Gani, “Short-term load forecasting using a hybrid model with a
refined exponentially weighted fuzzy time series and an improved harmony search,” Int. J. Electr. Power Energy Syst., vol. 62, no. from 2005, pp. 118129, 2014.
"""
import numpy as np
from pyFTS.common import FuzzySet,FLR
from pyFTS import fts
class ExponentialyWeightedFLRG(object):
"""First Order Exponentialy Weighted Fuzzy Logical Relationship Group"""
def __init__(self, LHS, c):
self.LHS = LHS
self.RHS = []
self.count = 0.0
self.c = c
def append(self, c):
self.RHS.append(c)
self.count = self.count + 1.0
def weights(self):
wei = [self.c ** k for k in np.arange(0.0, self.count, 1.0)]
tot = sum(wei)
return np.array([k / tot for k in wei])
def __str__(self):
tmp = self.LHS.name + " -> "
tmp2 = ""
cc = 0
wei = [self.c ** k for k in np.arange(0.0, self.count, 1.0)]
tot = sum(wei)
for c in sorted(self.RHS, key=lambda s: s.name):
if len(tmp2) > 0:
tmp2 = tmp2 + ","
tmp2 = tmp2 + c.name + "(" + str(wei[cc] / tot) + ")"
cc = cc + 1
return tmp + tmp2
def __len__(self):
return len(self.RHS)
class ExponentialyWeightedFTS(fts.FTS):
"""First Order Exponentialy Weighted Fuzzy Time Series"""
def __init__(self, name, **kwargs):
super(ExponentialyWeightedFTS, self).__init__(1, "EWFTS")
self.name = "Exponentialy Weighted FTS"
self.detail = "Sadaei"
self.c = 1
def generateFLRG(self, flrs, c):
flrgs = {}
for flr in flrs:
if flr.LHS.name in flrgs:
flrgs[flr.LHS.name].append(flr.RHS)
else:
flrgs[flr.LHS.name] = ExponentialyWeightedFLRG(flr.LHS, c);
flrgs[flr.LHS.name].append(flr.RHS)
return (flrgs)
def train(self, data, sets,order=1,parameters=1.05):
self.c = parameters
self.sets = sets
ndata = self.doTransformations(data)
tmpdata = FuzzySet.fuzzySeries(ndata, sets)
flrs = FLR.generateRecurrentFLRs(tmpdata)
self.flrgs = self.generateFLRG(flrs, self.c)
def forecast(self, data, **kwargs):
l = 1
data = np.array(data)
ndata = self.doTransformations(data)
l = len(ndata)
ret = []
for k in np.arange(0, l):
mv = FuzzySet.fuzzyInstance(ndata[k], self.sets)
actual = self.sets[np.argwhere(mv == max(mv))[0, 0]]
if actual.name not in self.flrgs:
ret.append(actual.centroid)
else:
flrg = self.flrgs[actual.name]
mp = self.getMidpoints(flrg)
ret.append(mp.dot(flrg.weights()))
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
return ret