56 lines
1.8 KiB
Python
56 lines
1.8 KiB
Python
"""
|
||
High Order Fuzzy Time Series by Hwang, Chen and Lee (1998)
|
||
|
||
Jeng-Ren Hwang, Shyi-Ming Chen, and Chia-Hoang Lee, “Handling forecasting problems using fuzzy time series,”
|
||
Fuzzy Sets Syst., no. 100, pp. 217–228, 1998.
|
||
"""
|
||
|
||
import numpy as np
|
||
from pyFTS.common import FuzzySet,FLR,Transformations
|
||
from pyFTS import fts
|
||
|
||
|
||
class HighOrderFTS(fts.FTS):
|
||
def __init__(self, name, **kwargs):
|
||
super(HighOrderFTS, self).__init__(1, name)
|
||
self.is_high_order = True
|
||
self.min_order = 2
|
||
self.name = "Hwang High Order FTS"
|
||
self.shortname = "Hwang" + name
|
||
self.detail = "Hwang"
|
||
|
||
def forecast(self, data, **kwargs):
|
||
|
||
ndata = self.doTransformations(data)
|
||
|
||
cn = np.array([0.0 for k in range(len(self.sets))])
|
||
ow = np.array([[0.0 for k in range(len(self.sets))] for z in range(self.order - 1)])
|
||
rn = np.array([[0.0 for k in range(len(self.sets))] for z in range(self.order - 1)])
|
||
ft = np.array([0.0 for k in range(len(self.sets))])
|
||
|
||
ret = []
|
||
|
||
for t in np.arange(self.order-1, len(ndata)):
|
||
|
||
for s in range(len(self.sets)):
|
||
cn[s] = self.sets[s].membership(ndata[t])
|
||
for w in range(self.order - 1):
|
||
ow[w, s] = self.sets[s].membership(ndata[t - w])
|
||
rn[w, s] = ow[w, s] * cn[s]
|
||
ft[s] = max(ft[s], rn[w, s])
|
||
mft = max(ft)
|
||
out = 0.0
|
||
count = 0.0
|
||
for s in range(len(self.sets)):
|
||
if ft[s] == mft:
|
||
out = out + self.sets[s].centroid
|
||
count += 1.0
|
||
ret.append(out / count)
|
||
|
||
ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]])
|
||
|
||
return ret
|
||
|
||
def train(self, data, sets, order=1, parameters=None):
|
||
self.sets = sets
|
||
self.order = order |