011e0ee4ce
- Scale Transformation
312 lines
8.0 KiB
Python
312 lines
8.0 KiB
Python
# -*- coding: utf8 -*-
|
||
|
||
"""
|
||
pyFTS module for common benchmark metrics
|
||
"""
|
||
|
||
import time
|
||
import numpy as np
|
||
import pandas as pd
|
||
from pyFTS.common import FuzzySet,SortedCollection
|
||
|
||
|
||
def acf(data, k):
|
||
"""
|
||
Autocorrelation function estimative
|
||
:param data:
|
||
:param k:
|
||
:return:
|
||
"""
|
||
mu = np.mean(data)
|
||
sigma = np.var(data)
|
||
n = len(data)
|
||
s = 0
|
||
for t in np.arange(0,n-k):
|
||
s += (data[t]-mu) * (data[t+k] - mu)
|
||
|
||
return 1/((n-k)*sigma)*s
|
||
|
||
|
||
def rmse(targets, forecasts):
|
||
"""
|
||
Root Mean Squared Error
|
||
:param targets:
|
||
:param forecasts:
|
||
:return:
|
||
"""
|
||
return np.sqrt(np.nanmean((targets - forecasts) ** 2))
|
||
|
||
|
||
def rmse_interval(targets, forecasts):
|
||
"""
|
||
Root Mean Squared Error
|
||
:param targets:
|
||
:param forecasts:
|
||
:return:
|
||
"""
|
||
fmean = [np.mean(i) for i in forecasts]
|
||
return np.sqrt(np.nanmean((fmean - targets) ** 2))
|
||
|
||
|
||
def mape(targets, forecasts):
|
||
"""
|
||
Mean Average Percentual Error
|
||
:param targets:
|
||
:param forecasts:
|
||
:return:
|
||
"""
|
||
return np.mean(np.abs(targets - forecasts) / targets) * 100
|
||
|
||
|
||
def smape(targets, forecasts, type=2):
|
||
"""
|
||
Symmetric Mean Average Percentual Error
|
||
:param targets:
|
||
:param forecasts:
|
||
:param type:
|
||
:return:
|
||
"""
|
||
if type == 1:
|
||
return np.mean(np.abs(forecasts - targets) / ((forecasts + targets)/2))
|
||
elif type == 2:
|
||
return np.mean(np.abs(forecasts - targets) / (abs(forecasts) + abs(targets)) )*100
|
||
else:
|
||
return sum(np.abs(forecasts - targets)) / sum(forecasts + targets)
|
||
|
||
|
||
def mape_interval(targets, forecasts):
|
||
fmean = [np.mean(i) for i in forecasts]
|
||
return np.mean(abs(fmean - targets) / fmean) * 100
|
||
|
||
|
||
def UStatistic(targets, forecasts):
|
||
"""
|
||
Theil's U Statistic
|
||
:param targets:
|
||
:param forecasts:
|
||
:return:
|
||
"""
|
||
l = len(targets)
|
||
naive = []
|
||
y = []
|
||
for k in np.arange(0,l-1):
|
||
y.append((forecasts[k ] - targets[k ]) ** 2)
|
||
naive.append((targets[k + 1] - targets[k]) ** 2)
|
||
return np.sqrt(sum(y) / sum(naive))
|
||
|
||
|
||
def TheilsInequality(targets, forecasts):
|
||
"""
|
||
Theil’s Inequality Coefficient
|
||
:param targets:
|
||
:param forecasts:
|
||
:return:
|
||
"""
|
||
res = targets - forecasts
|
||
t = len(res)
|
||
us = np.sqrt(sum([u**2 for u in res]))
|
||
ys = np.sqrt(sum([y**2 for y in targets]))
|
||
fs = np.sqrt(sum([f**2 for f in forecasts]))
|
||
return us / (ys + fs)
|
||
|
||
|
||
def BoxPierceStatistic(data, h):
|
||
"""
|
||
Q Statistic for Box-Pierce test
|
||
:param data:
|
||
:param h:
|
||
:return:
|
||
"""
|
||
n = len(data)
|
||
s = 0
|
||
for k in np.arange(1,h+1):
|
||
r = acf(data, k)
|
||
s += r**2
|
||
return n*s
|
||
|
||
|
||
def BoxLjungStatistic(data, h):
|
||
"""
|
||
Q Statistic for Ljung–Box test
|
||
:param data:
|
||
:param h:
|
||
:return:
|
||
"""
|
||
n = len(data)
|
||
s = 0
|
||
for k in np.arange(1,h+1):
|
||
r = acf(data, k)
|
||
s += r**2 / (n -k)
|
||
return n*(n-2)*s
|
||
|
||
|
||
def sharpness(forecasts):
|
||
"""Sharpness - Mean size of the intervals"""
|
||
tmp = [i[1] - i[0] for i in forecasts]
|
||
return np.mean(tmp)
|
||
|
||
|
||
def resolution(forecasts):
|
||
"""Resolution - Standard deviation of the intervals"""
|
||
shp = sharpness(forecasts)
|
||
tmp = [abs((i[1] - i[0]) - shp) for i in forecasts]
|
||
return np.mean(tmp)
|
||
|
||
|
||
def coverage(targets, forecasts):
|
||
"""Percent of"""
|
||
preds = []
|
||
for i in np.arange(0, len(forecasts)):
|
||
if targets[i] >= forecasts[i][0] and targets[i] <= forecasts[i][1]:
|
||
preds.append(1)
|
||
else:
|
||
preds.append(0)
|
||
return np.mean(preds)
|
||
|
||
|
||
def pinball(tau, target, forecast):
|
||
"""
|
||
Pinball loss function. Measure the distance of forecast to the tau-quantile of the target
|
||
:param tau: quantile value in the range (0,1)
|
||
:param target:
|
||
:param forecast:
|
||
:return: distance of forecast to the tau-quantile of the target
|
||
"""
|
||
if target >= forecast:
|
||
return (target - forecast) * tau
|
||
else:
|
||
return (forecast - target) * (1 - tau)
|
||
|
||
|
||
def pinball_mean(tau, targets, forecasts):
|
||
"""
|
||
Mean pinball loss value of the forecast for a given tau-quantile of the targets
|
||
:param tau: quantile value in the range (0,1)
|
||
:param targets: list of target values
|
||
:param forecasts: list of prediction intervals
|
||
:return:
|
||
"""
|
||
preds = []
|
||
if tau <= 0.5:
|
||
preds = [pinball(tau, targets[i], forecasts[i][0]) for i in np.arange(0, len(forecasts))]
|
||
else:
|
||
preds = [pinball(tau, targets[i], forecasts[i][1]) for i in np.arange(0, len(forecasts))]
|
||
return np.nanmean(preds)
|
||
|
||
|
||
def pmf_to_cdf(density):
|
||
ret = []
|
||
for row in density.index:
|
||
tmp = []
|
||
prev = 0
|
||
for col in density.columns:
|
||
prev += density[col][row] if not np.isnan(density[col][row]) else 0
|
||
tmp.append( prev )
|
||
ret.append(tmp)
|
||
df = pd.DataFrame(ret, columns=density.columns)
|
||
return df
|
||
|
||
|
||
def heavyside_cdf(bins, targets):
|
||
ret = []
|
||
for t in targets:
|
||
result = [1 if b >= t else 0 for b in bins]
|
||
ret.append(result)
|
||
df = pd.DataFrame(ret, columns=bins)
|
||
return df
|
||
|
||
|
||
def crps(targets, densities):
|
||
"""Continuous Ranked Probability Score"""
|
||
l = len(densities.columns)
|
||
n = len(densities.index)
|
||
Ff = pmf_to_cdf(densities)
|
||
Fa = heavyside_cdf(densities.columns, targets)
|
||
|
||
_crps = float(0.0)
|
||
for k in densities.index:
|
||
_crps += sum([ (Ff[col][k]-Fa[col][k])**2 for col in densities.columns])
|
||
|
||
return _crps / float(l * n)
|
||
|
||
|
||
def get_point_statistics(data, model, indexer=None):
|
||
"""Condensate all measures for point forecasters"""
|
||
|
||
if indexer is not None:
|
||
ndata = np.array(indexer.get_data(data))
|
||
else:
|
||
ndata = np.array(data[model.order:])
|
||
|
||
if model.is_multivariate or indexer is None:
|
||
forecasts = model.forecast(data)
|
||
elif not model.is_multivariate and indexer is not None:
|
||
forecasts = model.forecast(indexer.get_data(data))
|
||
|
||
try:
|
||
if model.has_seasonality:
|
||
nforecasts = np.array(forecasts)
|
||
else:
|
||
nforecasts = np.array(forecasts[:-1])
|
||
except Exception as ex:
|
||
print(ex)
|
||
return [np.nan,np.nan,np.nan]
|
||
ret = list()
|
||
try:
|
||
ret.append(np.round(rmse(ndata, nforecasts), 2))
|
||
except Exception as ex:
|
||
print(ex)
|
||
ret.append(np.nan)
|
||
try:
|
||
ret.append(np.round(smape(ndata, nforecasts), 2))
|
||
except Exception as ex:
|
||
print(ex)
|
||
ret.append(np.nan)
|
||
try:
|
||
ret.append(np.round(UStatistic(ndata, nforecasts), 2))
|
||
except Exception as ex:
|
||
print(ex)
|
||
ret.append(np.nan)
|
||
|
||
return ret
|
||
|
||
|
||
def get_interval_statistics(original, model):
|
||
"""Condensate all measures for point_to_interval forecasters"""
|
||
ret = list()
|
||
forecasts = model.forecastInterval(original)
|
||
ret.append(round(sharpness(forecasts), 2))
|
||
ret.append(round(resolution(forecasts), 2))
|
||
ret.append(round(coverage(original[model.order:], forecasts[:-1]), 2))
|
||
ret.append(round(pinball_mean(0.05, original[model.order:], forecasts[:-1]), 2))
|
||
ret.append(round(pinball_mean(0.25, original[model.order:], forecasts[:-1]), 2))
|
||
ret.append(round(pinball_mean(0.75, original[model.order:], forecasts[:-1]), 2))
|
||
ret.append(round(pinball_mean(0.95, original[model.order:], forecasts[:-1]), 2))
|
||
return ret
|
||
|
||
|
||
def get_distribution_statistics(original, model, steps, resolution):
|
||
ret = list()
|
||
try:
|
||
_s1 = time.time()
|
||
densities1 = model.forecastAheadDistribution(original, steps, parameters=3)
|
||
_e1 = time.time()
|
||
ret.append(round(crps(original, densities1), 3))
|
||
ret.append(round(_e1 - _s1, 3))
|
||
except Exception as e:
|
||
print('Erro: ', e)
|
||
ret.append(np.nan)
|
||
ret.append(np.nan)
|
||
|
||
try:
|
||
_s2 = time.time()
|
||
densities2 = model.forecastAheadDistribution(original, steps, parameters=2)
|
||
_e2 = time.time()
|
||
ret.append( round(crps(original, densities2), 3))
|
||
ret.append(round(_e2 - _s2, 3))
|
||
except:
|
||
ret.append(np.nan)
|
||
ret.append(np.nan)
|
||
|
||
return ret
|