2019-02-13 14:13:36 -02:00

663 lines
84 KiB
HTML

<!doctype html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="X-UA-Compatible" content="IE=Edge" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" /><script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-55120145-3']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
<title>pyFTS.common.fts &#8212; pyFTS 1.4 documentation</title>
<link rel="stylesheet" href="../../../_static/bizstyle.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<script type="text/javascript" src="../../../_static/documentation_options.js"></script>
<script type="text/javascript" src="../../../_static/jquery.js"></script>
<script type="text/javascript" src="../../../_static/underscore.js"></script>
<script type="text/javascript" src="../../../_static/doctools.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../../_static/bizstyle.js"></script>
<link rel="index" title="Index" href="../../../genindex.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0">
<!--[if lt IE 9]>
<script type="text/javascript" src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="../../../genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="../../../py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="nav-item nav-item-0"><a href="../../../index.html">pyFTS 1.4 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="../../index.html" accesskey="U">Module code</a> &#187;</li>
</ul>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<p class="logo"><a href="../../../index.html">
<img class="logo" src="../../../_static/logo_heading2.png" alt="Logo"/>
</a></p>
<div id="searchbox" style="display: none" role="search">
<h3>Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="../../../search.html" method="get">
<input type="text" name="q" />
<input type="submit" value="Go" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<h1>Source code for pyFTS.common.fts</h1><div class="highlight"><pre>
<span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="kn">from</span> <span class="nn">pyFTS.common</span> <span class="k">import</span> <span class="n">FuzzySet</span><span class="p">,</span> <span class="n">SortedCollection</span><span class="p">,</span> <span class="n">tree</span><span class="p">,</span> <span class="n">Util</span>
<div class="viewcode-block" id="FTS"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS">[docs]</a><span class="k">class</span> <span class="nc">FTS</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Fuzzy Time Series object model</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Create a Fuzzy Time Series model</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">sets</span> <span class="o">=</span> <span class="p">{}</span>
<span class="sd">&quot;&quot;&quot;The list of fuzzy sets used on this model&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span> <span class="o">=</span> <span class="p">{}</span>
<span class="sd">&quot;&quot;&quot;The list of Fuzzy Logical Relationship Groups - FLRG&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">order</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;order&#39;</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span>
<span class="sd">&quot;&quot;&quot;A integer with the model order (number of past lags are used on forecasting)&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">shortname</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;name&#39;</span><span class="p">,</span><span class="s2">&quot;&quot;</span><span class="p">)</span>
<span class="sd">&quot;&quot;&quot;A string with a short name or alias for the model&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;name&#39;</span><span class="p">,</span><span class="s2">&quot;&quot;</span><span class="p">)</span>
<span class="sd">&quot;&quot;&quot;A string with the model name&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">detail</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;name&#39;</span><span class="p">,</span><span class="s2">&quot;&quot;</span><span class="p">)</span>
<span class="sd">&quot;&quot;&quot;A string with the model detailed information&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_high_order</span> <span class="o">=</span> <span class="kc">False</span>
<span class="sd">&quot;&quot;&quot;A boolean value indicating if the model support orders greater than 1, default: False&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">min_order</span> <span class="o">=</span> <span class="mi">1</span>
<span class="sd">&quot;&quot;&quot;In high order models, this integer value indicates the minimal order supported for the model, default: 1&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">has_seasonality</span> <span class="o">=</span> <span class="kc">False</span>
<span class="sd">&quot;&quot;&quot;A boolean value indicating if the model supports seasonal indexers, default: False&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">has_point_forecasting</span> <span class="o">=</span> <span class="kc">True</span>
<span class="sd">&quot;&quot;&quot;A boolean value indicating if the model supports point forecasting, default: True&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">has_interval_forecasting</span> <span class="o">=</span> <span class="kc">False</span>
<span class="sd">&quot;&quot;&quot;A boolean value indicating if the model supports interval forecasting, default: False&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">has_probability_forecasting</span> <span class="o">=</span> <span class="kc">False</span>
<span class="sd">&quot;&quot;&quot;A boolean value indicating if the model support probabilistic forecasting, default: False&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_multivariate</span> <span class="o">=</span> <span class="kc">False</span>
<span class="sd">&quot;&quot;&quot;A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_clustered</span> <span class="o">=</span> <span class="kc">False</span>
<span class="sd">&quot;&quot;&quot;A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like </span>
<span class="sd"> a monovariate method, default: False&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dump</span> <span class="o">=</span> <span class="kc">False</span>
<span class="bp">self</span><span class="o">.</span><span class="n">transformations</span> <span class="o">=</span> <span class="p">[]</span>
<span class="sd">&quot;&quot;&quot;A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">transformations_param</span> <span class="o">=</span> <span class="p">[]</span>
<span class="sd">&quot;&quot;&quot;A list with the specific parameters for each data transformation&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">original_max</span> <span class="o">=</span> <span class="mi">0</span>
<span class="sd">&quot;&quot;&quot;A float with the upper limit of the Universe of Discourse, the maximal value found on training data&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">original_min</span> <span class="o">=</span> <span class="mi">0</span>
<span class="sd">&quot;&quot;&quot;A float with the lower limit of the Universe of Discourse, the minimal value found on training data&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;partitioner&quot;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="sd">&quot;&quot;&quot;A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy. &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span> <span class="o">!=</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">sets</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">sets</span>
<span class="bp">self</span><span class="o">.</span><span class="n">auto_update</span> <span class="o">=</span> <span class="kc">False</span>
<span class="sd">&quot;&quot;&quot;A boolean value indicating that model is incremental&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">benchmark_only</span> <span class="o">=</span> <span class="kc">False</span>
<span class="sd">&quot;&quot;&quot;A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">indexer</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;indexer&quot;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="sd">&quot;&quot;&quot;An pyFTS.models.seasonal.Indexer object for indexing the time series data&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">uod_clip</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;uod_clip&quot;</span><span class="p">,</span> <span class="kc">True</span><span class="p">)</span>
<span class="sd">&quot;&quot;&quot;Flag indicating if the test data will be clipped inside the training Universe of Discourse&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">alpha_cut</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;alpha_cut&quot;</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">)</span>
<span class="sd">&quot;&quot;&quot;A float with the minimal membership to be considered on fuzzyfication process&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">lags</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;lags&quot;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="sd">&quot;&quot;&quot;The list of lag indexes for high order models&quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">order</span>
<span class="sd">&quot;&quot;&quot;A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags </span>
<span class="sd"> needed to forecast a single step ahead&quot;&quot;&quot;</span>
<div class="viewcode-block" id="FTS.fuzzy"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.fuzzy">[docs]</a> <span class="k">def</span> <span class="nf">fuzzy</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Fuzzify a data point</span>
<span class="sd"> :param data: data point</span>
<span class="sd"> :return: maximum membership fuzzy set</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">best</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;fuzzyset&quot;</span><span class="p">:</span> <span class="s2">&quot;&quot;</span><span class="p">,</span> <span class="s2">&quot;membership&quot;</span><span class="p">:</span> <span class="mf">0.0</span><span class="p">}</span>
<span class="k">for</span> <span class="n">f</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">:</span>
<span class="n">fset</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">[</span><span class="n">f</span><span class="p">]</span>
<span class="k">if</span> <span class="n">best</span><span class="p">[</span><span class="s2">&quot;membership&quot;</span><span class="p">]</span> <span class="o">&lt;=</span> <span class="n">fset</span><span class="o">.</span><span class="n">membership</span><span class="p">(</span><span class="n">data</span><span class="p">):</span>
<span class="n">best</span><span class="p">[</span><span class="s2">&quot;fuzzyset&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">fset</span><span class="o">.</span><span class="n">name</span>
<span class="n">best</span><span class="p">[</span><span class="s2">&quot;membership&quot;</span><span class="p">]</span> <span class="o">=</span> <span class="n">fset</span><span class="o">.</span><span class="n">membership</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="k">return</span> <span class="n">best</span></div>
<div class="viewcode-block" id="FTS.predict"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.predict">[docs]</a> <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Forecast using trained model</span>
<span class="sd"> :param data: time series with minimal length to the order of the model</span>
<span class="sd"> :keyword type: the forecasting type, one of these values: point(default), interval, distribution or multivariate.</span>
<span class="sd"> :keyword steps_ahead: The forecasting horizon, i. e., the number of steps ahead to forecast</span>
<span class="sd"> :keyword start: in the multi step forecasting, the index of the data where to start forecasting</span>
<span class="sd"> :keyword distributed: boolean, indicate if the forecasting procedure will be distributed in a dispy cluster</span>
<span class="sd"> :keyword nodes: a list with the dispy cluster nodes addresses</span>
<span class="sd"> :keyword explain: try to explain, step by step, the one-step-ahead point forecasting result given the input data.</span>
<span class="sd"> :keyword generators: for multivariate methods on multi step ahead forecasting, generators is a dict where the keys</span>
<span class="sd"> are the variables names (except the target_variable) and the values are lambda functions that</span>
<span class="sd"> accept one value (the actual value of the variable) and return the next value.</span>
<span class="sd"> :return: a numpy array with the forecasted data</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_multivariate</span><span class="p">:</span>
<span class="n">ndata</span> <span class="o">=</span> <span class="n">data</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">ndata</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">apply_transformations</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">uod_clip</span><span class="p">:</span>
<span class="n">ndata</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">clip</span><span class="p">(</span><span class="n">ndata</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">original_min</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">original_max</span><span class="p">)</span>
<span class="k">if</span> <span class="s1">&#39;distributed&#39;</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="p">:</span>
<span class="n">distributed</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;distributed&#39;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">distributed</span> <span class="o">=</span> <span class="kc">False</span>
<span class="k">if</span> <span class="n">distributed</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">distributed</span> <span class="o">==</span> <span class="kc">False</span><span class="p">:</span>
<span class="k">if</span> <span class="s1">&#39;type&#39;</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="p">:</span>
<span class="nb">type</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s2">&quot;type&quot;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="nb">type</span> <span class="o">=</span> <span class="s1">&#39;point&#39;</span>
<span class="n">steps_ahead</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;steps_ahead&quot;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="k">if</span> <span class="n">steps_ahead</span> <span class="o">==</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">steps_ahead</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">type</span> <span class="o">==</span> <span class="s1">&#39;point&#39;</span><span class="p">:</span>
<span class="n">ret</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">forecast</span><span class="p">(</span><span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">type</span> <span class="o">==</span> <span class="s1">&#39;interval&#39;</span><span class="p">:</span>
<span class="n">ret</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">forecast_interval</span><span class="p">(</span><span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">type</span> <span class="o">==</span> <span class="s1">&#39;distribution&#39;</span><span class="p">:</span>
<span class="n">ret</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">forecast_distribution</span><span class="p">(</span><span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">type</span> <span class="o">==</span> <span class="s1">&#39;multivariate&#39;</span><span class="p">:</span>
<span class="n">ret</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">forecast_multivariate</span><span class="p">(</span><span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">steps_ahead</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">type</span> <span class="o">==</span> <span class="s1">&#39;point&#39;</span><span class="p">:</span>
<span class="n">ret</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">forecast_ahead</span><span class="p">(</span><span class="n">ndata</span><span class="p">,</span> <span class="n">steps_ahead</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">type</span> <span class="o">==</span> <span class="s1">&#39;interval&#39;</span><span class="p">:</span>
<span class="n">ret</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">forecast_ahead_interval</span><span class="p">(</span><span class="n">ndata</span><span class="p">,</span> <span class="n">steps_ahead</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">type</span> <span class="o">==</span> <span class="s1">&#39;distribution&#39;</span><span class="p">:</span>
<span class="n">ret</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">forecast_ahead_distribution</span><span class="p">(</span><span class="n">ndata</span><span class="p">,</span> <span class="n">steps_ahead</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">type</span> <span class="o">==</span> <span class="s1">&#39;multivariate&#39;</span><span class="p">:</span>
<span class="n">ret</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">forecast_ahead_multivariate</span><span class="p">(</span><span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="p">[</span><span class="s1">&#39;point&#39;</span><span class="p">,</span> <span class="s1">&#39;interval&#39;</span><span class="p">,</span> <span class="s1">&#39;distribution&#39;</span><span class="p">,</span> <span class="s1">&#39;multivariate&#39;</span><span class="p">]</span><span class="o">.</span><span class="fm">__contains__</span><span class="p">(</span><span class="nb">type</span><span class="p">):</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s1">&#39;The argument </span><span class="se">\&#39;</span><span class="s1">type</span><span class="se">\&#39;</span><span class="s1"> has an unknown value.&#39;</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">if</span> <span class="n">distributed</span> <span class="o">==</span> <span class="s1">&#39;dispy&#39;</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">pyFTS.distributed</span> <span class="k">import</span> <span class="n">dispy</span>
<span class="n">nodes</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">&quot;nodes&quot;</span><span class="p">,</span> <span class="p">[</span><span class="s1">&#39;127.0.0.1&#39;</span><span class="p">])</span>
<span class="n">num_batches</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;num_batches&#39;</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">dispy</span><span class="o">.</span><span class="n">distributed_predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">kwargs</span><span class="p">,</span> <span class="n">nodes</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="n">num_batches</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">distributed</span> <span class="o">==</span> <span class="s1">&#39;spark&#39;</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">pyFTS.distributed</span> <span class="k">import</span> <span class="n">spark</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">distributed_predict</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">ndata</span><span class="p">,</span> <span class="n">model</span><span class="o">=</span><span class="bp">self</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">if</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_multivariate</span><span class="p">:</span>
<span class="n">kwargs</span><span class="p">[</span><span class="s1">&#39;type&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="nb">type</span>
<span class="n">ret</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">apply_inverse_transformations</span><span class="p">(</span><span class="n">ret</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="p">[</span><span class="n">data</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span> <span class="o">-</span> <span class="mi">1</span><span class="p">:]],</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">return</span> <span class="n">ret</span></div>
<div class="viewcode-block" id="FTS.forecast"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.forecast">[docs]</a> <span class="k">def</span> <span class="nf">forecast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Point forecast one step ahead</span>
<span class="sd"> :param data: time series data with the minimal length equal to the max_lag of the model</span>
<span class="sd"> :param kwargs: model specific parameters</span>
<span class="sd"> :return: a list with the forecasted values</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span><span class="s1">&#39;This model do not perform one step ahead point forecasts!&#39;</span><span class="p">)</span></div>
<div class="viewcode-block" id="FTS.forecast_interval"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.forecast_interval">[docs]</a> <span class="k">def</span> <span class="nf">forecast_interval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Interval forecast one step ahead</span>
<span class="sd"> :param data: time series data with the minimal length equal to the max_lag of the model</span>
<span class="sd"> :param kwargs: model specific parameters</span>
<span class="sd"> :return: a list with the prediction intervals</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span><span class="s1">&#39;This model do not perform one step ahead interval forecasts!&#39;</span><span class="p">)</span></div>
<div class="viewcode-block" id="FTS.forecast_distribution"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.forecast_distribution">[docs]</a> <span class="k">def</span> <span class="nf">forecast_distribution</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Probabilistic forecast one step ahead</span>
<span class="sd"> :param data: time series data with the minimal length equal to the max_lag of the model</span>
<span class="sd"> :param kwargs: model specific parameters</span>
<span class="sd"> :return: a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span><span class="s1">&#39;This model do not perform one step ahead distribution forecasts!&#39;</span><span class="p">)</span></div>
<div class="viewcode-block" id="FTS.forecast_multivariate"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.forecast_multivariate">[docs]</a> <span class="k">def</span> <span class="nf">forecast_multivariate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Multivariate forecast one step ahead</span>
<span class="sd"> :param data: Pandas dataframe with one column for each variable and with the minimal length equal to the max_lag of the model</span>
<span class="sd"> :param kwargs: model specific parameters</span>
<span class="sd"> :return: a Pandas Dataframe object representing the forecasted values for each variable</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span><span class="s1">&#39;This model do not perform one step ahead multivariate forecasts!&#39;</span><span class="p">)</span></div>
<div class="viewcode-block" id="FTS.forecast_ahead"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.forecast_ahead">[docs]</a> <span class="k">def</span> <span class="nf">forecast_ahead</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">steps</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Point forecast n steps ahead</span>
<span class="sd"> :param data: time series data with the minimal length equal to the max_lag of the model</span>
<span class="sd"> :param steps: the number of steps ahead to forecast</span>
<span class="sd"> :keyword start: in the multi step forecasting, the index of the data where to start forecasting</span>
<span class="sd"> :return: a list with the forecasted values</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">):</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">tolist</span><span class="p">()</span>
<span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="n">steps</span><span class="p">):</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">forecast</span><span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="o">-</span><span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span><span class="p">:],</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">tmp</span><span class="p">,(</span><span class="nb">list</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">)):</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="n">tmp</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
<span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
<span class="n">data</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
<span class="k">return</span> <span class="n">ret</span></div>
<div class="viewcode-block" id="FTS.forecast_ahead_interval"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.forecast_ahead_interval">[docs]</a> <span class="k">def</span> <span class="nf">forecast_ahead_interval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">steps</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Interval forecast n steps ahead</span>
<span class="sd"> :param data: time series data with the minimal length equal to the max_lag of the model</span>
<span class="sd"> :param steps: the number of steps ahead to forecast</span>
<span class="sd"> :param kwargs: model specific parameters</span>
<span class="sd"> :return: a list with the forecasted intervals</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span><span class="s1">&#39;This model do not perform multi step ahead interval forecasts!&#39;</span><span class="p">)</span></div>
<div class="viewcode-block" id="FTS.forecast_ahead_distribution"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.forecast_ahead_distribution">[docs]</a> <span class="k">def</span> <span class="nf">forecast_ahead_distribution</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">steps</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Probabilistic forecast n steps ahead</span>
<span class="sd"> :param data: time series data with the minimal length equal to the max_lag of the model</span>
<span class="sd"> :param steps: the number of steps ahead to forecast</span>
<span class="sd"> :param kwargs: model specific parameters</span>
<span class="sd"> :return: a list with the forecasted Probability Distributions</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span><span class="s1">&#39;This model do not perform multi step ahead distribution forecasts!&#39;</span><span class="p">)</span></div>
<div class="viewcode-block" id="FTS.forecast_ahead_multivariate"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.forecast_ahead_multivariate">[docs]</a> <span class="k">def</span> <span class="nf">forecast_ahead_multivariate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">steps</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Multivariate forecast n step ahead</span>
<span class="sd"> :param data: Pandas dataframe with one column for each variable and with the minimal length equal to the max_lag of the model</span>
<span class="sd"> :param steps: the number of steps ahead to forecast</span>
<span class="sd"> :param kwargs: model specific parameters</span>
<span class="sd"> :return: a Pandas Dataframe object representing the forecasted values for each variable</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">(</span><span class="s1">&#39;This model do not perform one step ahead multivariate forecasts!&#39;</span><span class="p">)</span></div>
<div class="viewcode-block" id="FTS.train"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.train">[docs]</a> <span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Method specific parameter fitting</span>
<span class="sd"> :param data: training time series data</span>
<span class="sd"> :param kwargs: Method specific parameters</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">pass</span></div>
<div class="viewcode-block" id="FTS.fit"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.fit">[docs]</a> <span class="k">def</span> <span class="nf">fit</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Fit the model&#39;s parameters based on the training data.</span>
<span class="sd"> :param ndata: training time series data</span>
<span class="sd"> :param kwargs:</span>
<span class="sd"> :keyword num_batches: split the training data in num_batches to save memory during the training process</span>
<span class="sd"> :keyword save_model: save final model on disk</span>
<span class="sd"> :keyword batch_save: save the model between each batch</span>
<span class="sd"> :keyword file_path: path to save the model</span>
<span class="sd"> :keyword distributed: boolean, indicate if the training procedure will be distributed in a dispy cluster</span>
<span class="sd"> :keyword nodes: a list with the dispy cluster nodes addresses</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="kn">import</span> <span class="nn">datetime</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_multivariate</span><span class="p">:</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">ndata</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">data</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">apply_transformations</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">original_min</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">nanmin</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">original_max</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">nanmax</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="k">if</span> <span class="s1">&#39;sets&#39;</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">sets</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;sets&#39;</span><span class="p">)</span>
<span class="k">if</span> <span class="s1">&#39;partitioner&#39;</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;partitioner&#39;</span><span class="p">)</span>
<span class="k">if</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">sets</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">)</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">benchmark_only</span> <span class="ow">and</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_multivariate</span><span class="p">:</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">sets</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">sets</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">Exception</span><span class="p">(</span><span class="s2">&quot;Fuzzy sets were not provided for the model. Use &#39;sets&#39; parameter or &#39;partitioner&#39;. &quot;</span><span class="p">)</span>
<span class="k">if</span> <span class="s1">&#39;order&#39;</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">order</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">&#39;order&#39;</span><span class="p">)</span>
<span class="n">dump</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;dump&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">num_batches</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;num_batches&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">save</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;save_model&#39;</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span> <span class="c1"># save model on disk</span>
<span class="n">batch_save</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;batch_save&#39;</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span> <span class="c1">#save model between batches</span>
<span class="n">file_path</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;file_path&#39;</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
<span class="n">distributed</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;distributed&#39;</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
<span class="n">batch_save_interval</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;batch_save_interval&#39;</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
<span class="k">if</span> <span class="n">distributed</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">distributed</span><span class="p">:</span>
<span class="k">if</span> <span class="n">distributed</span> <span class="o">==</span> <span class="s1">&#39;dispy&#39;</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">pyFTS.distributed</span> <span class="k">import</span> <span class="n">dispy</span>
<span class="n">nodes</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;nodes&#39;</span><span class="p">,</span> <span class="kc">False</span><span class="p">)</span>
<span class="n">train_method</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;train_method&#39;</span><span class="p">,</span> <span class="n">dispy</span><span class="o">.</span><span class="n">simple_model_train</span><span class="p">)</span>
<span class="n">dispy</span><span class="o">.</span><span class="n">distributed_train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">train_method</span><span class="p">,</span> <span class="n">nodes</span><span class="p">,</span> <span class="nb">type</span><span class="p">(</span><span class="bp">self</span><span class="p">),</span> <span class="n">data</span><span class="p">,</span> <span class="n">num_batches</span><span class="p">,</span> <span class="p">{},</span>
<span class="n">batch_save</span><span class="o">=</span><span class="n">batch_save</span><span class="p">,</span> <span class="n">file_path</span><span class="o">=</span><span class="n">file_path</span><span class="p">,</span>
<span class="n">batch_save_interval</span><span class="o">=</span><span class="n">batch_save_interval</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">distributed</span> <span class="o">==</span> <span class="s1">&#39;spark&#39;</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">pyFTS.distributed</span> <span class="k">import</span> <span class="n">spark</span>
<span class="n">url</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;url&#39;</span><span class="p">,</span> <span class="s1">&#39;spark://192.168.0.110:7077&#39;</span><span class="p">)</span>
<span class="n">app</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">&#39;app&#39;</span><span class="p">,</span> <span class="s1">&#39;pyFTS&#39;</span><span class="p">)</span>
<span class="n">spark</span><span class="o">.</span><span class="n">distributed_train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">url</span><span class="o">=</span><span class="n">url</span><span class="p">,</span> <span class="n">app</span><span class="o">=</span><span class="n">app</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">if</span> <span class="n">dump</span> <span class="o">==</span> <span class="s1">&#39;time&#39;</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;[{0: %H:%M:%S}] Start training&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">datetime</span><span class="o">.</span><span class="n">datetime</span><span class="o">.</span><span class="n">now</span><span class="p">()))</span>
<span class="k">if</span> <span class="n">num_batches</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="n">batch_size</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">n</span> <span class="o">/</span> <span class="n">num_batches</span><span class="p">)</span>
<span class="n">bcount</span> <span class="o">=</span> <span class="mi">1</span>
<span class="n">rng</span> <span class="o">=</span> <span class="nb">range</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">order</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">)</span>
<span class="k">if</span> <span class="n">dump</span> <span class="o">==</span> <span class="s1">&#39;tqdm&#39;</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">tqdm</span> <span class="k">import</span> <span class="n">tqdm</span>
<span class="n">rng</span> <span class="o">=</span> <span class="n">tqdm</span><span class="p">(</span><span class="n">rng</span><span class="p">)</span>
<span class="k">for</span> <span class="n">ct</span> <span class="ow">in</span> <span class="n">rng</span><span class="p">:</span>
<span class="k">if</span> <span class="n">dump</span> <span class="o">==</span> <span class="s1">&#39;time&#39;</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;[{0: %H:%M:%S}] Starting batch &quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">datetime</span><span class="o">.</span><span class="n">datetime</span><span class="o">.</span><span class="n">now</span><span class="p">())</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">bcount</span><span class="p">))</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_multivariate</span><span class="p">:</span>
<span class="n">mdata</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">iloc</span><span class="p">[</span><span class="n">ct</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">order</span><span class="p">:</span><span class="n">ct</span> <span class="o">+</span> <span class="n">batch_size</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">mdata</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="n">ct</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">order</span> <span class="p">:</span> <span class="n">ct</span> <span class="o">+</span> <span class="n">batch_size</span><span class="p">]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">mdata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">if</span> <span class="n">batch_save</span><span class="p">:</span>
<span class="n">Util</span><span class="o">.</span><span class="n">persist_obj</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span><span class="n">file_path</span><span class="p">)</span>
<span class="k">if</span> <span class="n">dump</span> <span class="o">==</span> <span class="s1">&#39;time&#39;</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;[{0: %H:%M:%S}] Finish batch &quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">datetime</span><span class="o">.</span><span class="n">datetime</span><span class="o">.</span><span class="n">now</span><span class="p">())</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">bcount</span><span class="p">))</span>
<span class="n">bcount</span> <span class="o">+=</span> <span class="mi">1</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">if</span> <span class="n">dump</span> <span class="o">==</span> <span class="s1">&#39;time&#39;</span><span class="p">:</span>
<span class="nb">print</span><span class="p">(</span><span class="s2">&quot;[{0: %H:%M:%S}] Finish training&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">datetime</span><span class="o">.</span><span class="n">datetime</span><span class="o">.</span><span class="n">now</span><span class="p">()))</span>
<span class="k">if</span> <span class="n">save</span><span class="p">:</span>
<span class="n">Util</span><span class="o">.</span><span class="n">persist_obj</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">file_path</span><span class="p">)</span></div>
<div class="viewcode-block" id="FTS.clone_parameters"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.clone_parameters">[docs]</a> <span class="k">def</span> <span class="nf">clone_parameters</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">model</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Import the parameters values from other model</span>
<span class="sd"> :param model:</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">order</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">order</span>
<span class="bp">self</span><span class="o">.</span><span class="n">shortname</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">shortname</span>
<span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">name</span>
<span class="bp">self</span><span class="o">.</span><span class="n">detail</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">detail</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_high_order</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">is_high_order</span>
<span class="bp">self</span><span class="o">.</span><span class="n">min_order</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">min_order</span>
<span class="bp">self</span><span class="o">.</span><span class="n">has_seasonality</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">has_seasonality</span>
<span class="bp">self</span><span class="o">.</span><span class="n">has_point_forecasting</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">has_point_forecasting</span>
<span class="bp">self</span><span class="o">.</span><span class="n">has_interval_forecasting</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">has_interval_forecasting</span>
<span class="bp">self</span><span class="o">.</span><span class="n">has_probability_forecasting</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">has_probability_forecasting</span>
<span class="bp">self</span><span class="o">.</span><span class="n">is_multivariate</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">is_multivariate</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dump</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">dump</span>
<span class="bp">self</span><span class="o">.</span><span class="n">transformations</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">transformations</span>
<span class="bp">self</span><span class="o">.</span><span class="n">transformations_param</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">transformations_param</span>
<span class="bp">self</span><span class="o">.</span><span class="n">original_max</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">original_max</span>
<span class="bp">self</span><span class="o">.</span><span class="n">original_min</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">original_min</span>
<span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">partitioner</span>
<span class="bp">self</span><span class="o">.</span><span class="n">sets</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">sets</span>
<span class="bp">self</span><span class="o">.</span><span class="n">auto_update</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">auto_update</span>
<span class="bp">self</span><span class="o">.</span><span class="n">benchmark_only</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">benchmark_only</span>
<span class="bp">self</span><span class="o">.</span><span class="n">indexer</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">indexer</span></div>
<div class="viewcode-block" id="FTS.append_rule"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.append_rule">[docs]</a> <span class="k">def</span> <span class="nf">append_rule</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">flrg</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Append FLRG rule to the model</span>
<span class="sd"> :param flrg: rule</span>
<span class="sd"> :return:</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">flrg</span><span class="o">.</span><span class="n">get_key</span><span class="p">()</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flrg</span><span class="o">.</span><span class="n">get_key</span><span class="p">()]</span> <span class="o">=</span> <span class="n">flrg</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">RHS</span><span class="p">,</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span> <span class="nb">set</span><span class="p">)):</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">flrg</span><span class="o">.</span><span class="n">RHS</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flrg</span><span class="o">.</span><span class="n">get_key</span><span class="p">()]</span><span class="o">.</span><span class="n">append_rhs</span><span class="p">(</span><span class="n">k</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">RHS</span><span class="p">,</span> <span class="nb">dict</span><span class="p">):</span>
<span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">value</span> <span class="ow">in</span> <span class="n">flrg</span><span class="o">.</span><span class="n">RHS</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flrg</span><span class="o">.</span><span class="n">get_key</span><span class="p">()]</span><span class="o">.</span><span class="n">append_rhs</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="n">count</span><span class="o">=</span><span class="n">value</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flrg</span><span class="o">.</span><span class="n">get_key</span><span class="p">()]</span><span class="o">.</span><span class="n">append_rhs</span><span class="p">(</span><span class="n">flrg</span><span class="o">.</span><span class="n">RHS</span><span class="p">)</span></div>
<div class="viewcode-block" id="FTS.merge"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.merge">[docs]</a> <span class="k">def</span> <span class="nf">merge</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">model</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Merge the FLRG rules from other model</span>
<span class="sd"> :param model: source model</span>
<span class="sd"> :return:</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">for</span> <span class="n">key</span><span class="p">,</span> <span class="n">flrg</span> <span class="ow">in</span> <span class="n">model</span><span class="o">.</span><span class="n">flrgs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
<span class="bp">self</span><span class="o">.</span><span class="n">append_rule</span><span class="p">(</span><span class="n">flrg</span><span class="p">)</span></div>
<div class="viewcode-block" id="FTS.append_transformation"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.append_transformation">[docs]</a> <span class="k">def</span> <span class="nf">append_transformation</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">transformation</span><span class="p">):</span>
<span class="k">if</span> <span class="n">transformation</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">transformations</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">transformation</span><span class="p">)</span></div>
<div class="viewcode-block" id="FTS.apply_transformations"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.apply_transformations">[docs]</a> <span class="k">def</span> <span class="nf">apply_transformations</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">updateUoD</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Apply the data transformations for data preprocessing</span>
<span class="sd"> :param data: input data</span>
<span class="sd"> :param params: transformation parameters</span>
<span class="sd"> :param updateUoD:</span>
<span class="sd"> :param kwargs:</span>
<span class="sd"> :return: preprocessed data</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">ndata</span> <span class="o">=</span> <span class="n">data</span>
<span class="k">if</span> <span class="n">updateUoD</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">min</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="o">&lt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">original_min</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="o">*</span> <span class="mf">1.1</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">original_min</span> <span class="o">=</span> <span class="nb">min</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="o">*</span> <span class="mf">0.9</span>
<span class="k">if</span> <span class="nb">max</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">original_max</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="o">*</span> <span class="mf">1.1</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">original_max</span> <span class="o">=</span> <span class="nb">max</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="o">*</span> <span class="mf">0.9</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">transformations</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">if</span> <span class="n">params</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">params</span> <span class="o">=</span> <span class="p">[</span> <span class="kc">None</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformations</span><span class="p">]</span>
<span class="k">for</span> <span class="n">c</span><span class="p">,</span> <span class="n">t</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">transformations</span><span class="p">,</span> <span class="n">start</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="n">ndata</span> <span class="o">=</span> <span class="n">t</span><span class="o">.</span><span class="n">apply</span><span class="p">(</span><span class="n">ndata</span><span class="p">,</span><span class="n">params</span><span class="p">[</span><span class="n">c</span><span class="p">])</span>
<span class="k">return</span> <span class="n">ndata</span></div>
<div class="viewcode-block" id="FTS.apply_inverse_transformations"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.apply_inverse_transformations">[docs]</a> <span class="k">def</span> <span class="nf">apply_inverse_transformations</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">params</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Apply the data transformations for data postprocessing</span>
<span class="sd"> :param data: input data</span>
<span class="sd"> :param params: transformation parameters</span>
<span class="sd"> :param updateUoD:</span>
<span class="sd"> :param kwargs:</span>
<span class="sd"> :return: postprocessed data</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">transformations</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="k">if</span> <span class="n">params</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">params</span> <span class="o">=</span> <span class="p">[</span><span class="kc">None</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">transformations</span><span class="p">]</span>
<span class="k">for</span> <span class="n">c</span><span class="p">,</span> <span class="n">t</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="nb">reversed</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">transformations</span><span class="p">),</span> <span class="n">start</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="n">ndata</span> <span class="o">=</span> <span class="n">t</span><span class="o">.</span><span class="n">inverse</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">params</span><span class="p">[</span><span class="n">c</span><span class="p">],</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="k">return</span> <span class="n">ndata</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">data</span></div>
<div class="viewcode-block" id="FTS.get_UoD"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.get_UoD">[docs]</a> <span class="k">def</span> <span class="nf">get_UoD</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="c1">#return [self.original_min, self.original_max]</span>
<span class="k">return</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">min</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">max</span><span class="p">]</span></div>
<span class="k">def</span> <span class="nf">__str__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;String representation of the model&quot;&quot;&quot;</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">+</span> <span class="s2">&quot;:</span><span class="se">\n</span><span class="s2">&quot;</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">type</span> <span class="o">==</span> <span class="s1">&#39;common&#39;</span><span class="p">:</span>
<span class="k">for</span> <span class="n">r</span> <span class="ow">in</span> <span class="nb">sorted</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">,</span> <span class="n">key</span><span class="o">=</span><span class="k">lambda</span> <span class="n">key</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">key</span><span class="p">]</span><span class="o">.</span><span class="n">get_midpoint</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">partitioner</span><span class="o">.</span><span class="n">sets</span><span class="p">)):</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="s2">&quot;</span><span class="si">{0}{1}</span><span class="se">\n</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">tmp</span><span class="p">,</span> <span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">r</span><span class="p">]))</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">for</span> <span class="n">r</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">flrgs</span><span class="p">:</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="s2">&quot;</span><span class="si">{0}{1}</span><span class="se">\n</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">tmp</span><span class="p">,</span> <span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">r</span><span class="p">]))</span>
<span class="k">return</span> <span class="n">tmp</span>
<span class="k">def</span> <span class="nf">__len__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> The length (number of rules) of the model</span>
<span class="sd"> :return: number of rules</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">)</span>
<div class="viewcode-block" id="FTS.len_total"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.len_total">[docs]</a> <span class="k">def</span> <span class="nf">len_total</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Total length of the model, adding the number of terms in all rules</span>
<span class="sd"> :return:</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="nb">sum</span><span class="p">([</span><span class="nb">len</span><span class="p">(</span><span class="n">k</span><span class="p">)</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">])</span></div>
<div class="viewcode-block" id="FTS.reset_calculated_values"><a class="viewcode-back" href="../../../pyFTS.common.html#pyFTS.common.fts.FTS.reset_calculated_values">[docs]</a> <span class="k">def</span> <span class="nf">reset_calculated_values</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Reset all pre-calculated values on the FLRG&#39;s</span>
<span class="sd"> :return:</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">for</span> <span class="n">flrg</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="o">.</span><span class="n">keys</span><span class="p">():</span>
<span class="bp">self</span><span class="o">.</span><span class="n">flrgs</span><span class="p">[</span><span class="n">flrg</span><span class="p">]</span><span class="o">.</span><span class="n">reset_calculated_values</span><span class="p">()</span></div></div>
</pre></div>
</div>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="../../../genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="../../../py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="nav-item nav-item-0"><a href="../../../index.html">pyFTS 1.4 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="../../index.html" >Module code</a> &#187;</li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2018, Machine Intelligence and Data Science Laboratory - UFMG - Brazil.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.7.2.
</div>
</body>
</html>