pyFTS/docs/build/html/pyFTS.benchmarks.html
2020-08-18 17:06:41 -03:00

1980 lines
172 KiB
HTML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0"><script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-55120145-3']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
<title>pyFTS.benchmarks package &#8212; pyFTS 1.6 documentation</title>
<link rel="stylesheet" href="_static/bizstyle.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<script id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/language_data.js"></script>
<script src="_static/bizstyle.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="pyFTS.common package" href="pyFTS.common.html" />
<link rel="prev" title="pyFTS package" href="pyFTS.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0">
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="pyFTS.common.html" title="pyFTS.common package"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="pyFTS.html" title="pyFTS package"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.6 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="pyFTS.html" accesskey="U">pyFTS package</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">pyFTS.benchmarks package</a></li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="pyfts-benchmarks-package">
<h1>pyFTS.benchmarks package<a class="headerlink" href="#pyfts-benchmarks-package" title="Permalink to this headline"></a></h1>
<div class="section" id="module-pyFTS.benchmarks">
<span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-pyFTS.benchmarks" title="Permalink to this headline"></a></h2>
<p>pyFTS module for benchmarking the FTS models</p>
</div>
<div class="section" id="submodules">
<h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this headline"></a></h2>
</div>
<div class="section" id="module-pyFTS.benchmarks.benchmarks">
<span id="pyfts-benchmarks-benchmarks-module"></span><h2>pyFTS.benchmarks.benchmarks module<a class="headerlink" href="#module-pyFTS.benchmarks.benchmarks" title="Permalink to this headline"></a></h2>
<p>Benchmarks methods for FTS methods</p>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.SelecaoSimples_MenorRMSE">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">SelecaoSimples_MenorRMSE</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">original</span></em>, <em class="sig-param"><span class="n">parameters</span></em>, <em class="sig-param"><span class="n">modelo</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#SelecaoSimples_MenorRMSE"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.SelecaoSimples_MenorRMSE" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.common_process_interval_jobs">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">common_process_interval_jobs</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">conn</span></em>, <em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">job</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#common_process_interval_jobs"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.common_process_interval_jobs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.common_process_point_jobs">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">common_process_point_jobs</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">conn</span></em>, <em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">job</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#common_process_point_jobs"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.common_process_point_jobs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.common_process_probabilistic_jobs">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">common_process_probabilistic_jobs</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">conn</span></em>, <em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">job</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#common_process_probabilistic_jobs"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.common_process_probabilistic_jobs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.common_process_time_jobs">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">common_process_time_jobs</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">conn</span></em>, <em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">job</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#common_process_time_jobs"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.common_process_time_jobs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.compareModelsPlot">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">compareModelsPlot</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">original</span></em>, <em class="sig-param"><span class="n">models_fo</span></em>, <em class="sig-param"><span class="n">models_ho</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#compareModelsPlot"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.compareModelsPlot" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.compareModelsTable">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">compareModelsTable</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">original</span></em>, <em class="sig-param"><span class="n">models_fo</span></em>, <em class="sig-param"><span class="n">models_ho</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#compareModelsTable"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.compareModelsTable" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.distributed_model_train_test_time">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">distributed_model_train_test_time</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">models</span></em>, <em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">windowsize</span></em>, <em class="sig-param"><span class="n">train</span><span class="o">=</span><span class="default_value">0.8</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#distributed_model_train_test_time"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.distributed_model_train_test_time" title="Permalink to this definition"></a></dt>
<dd><p>Assess the train and test times for a given list of configured models and save the results on a database.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>models</strong> A list of FTS models already configured, but not yet trained,</p></li>
<li><p><strong>data</strong> time series data, including train and test data</p></li>
<li><p><strong>windowsize</strong> Train/test data windows</p></li>
<li><p><strong>train</strong> Percent of data window that will be used to train the models</p></li>
<li><p><strong>kwargs</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.get_benchmark_interval_methods">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">get_benchmark_interval_methods</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#get_benchmark_interval_methods"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.get_benchmark_interval_methods" title="Permalink to this definition"></a></dt>
<dd><p>Return all non FTS methods for point_to_interval forecasting</p>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.get_benchmark_point_methods">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">get_benchmark_point_methods</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#get_benchmark_point_methods"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.get_benchmark_point_methods" title="Permalink to this definition"></a></dt>
<dd><p>Return all non FTS methods for point forecasting</p>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.get_benchmark_probabilistic_methods">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">get_benchmark_probabilistic_methods</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#get_benchmark_probabilistic_methods"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.get_benchmark_probabilistic_methods" title="Permalink to this definition"></a></dt>
<dd><p>Return all FTS methods for probabilistic forecasting</p>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.get_interval_methods">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">get_interval_methods</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#get_interval_methods"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.get_interval_methods" title="Permalink to this definition"></a></dt>
<dd><p>Return all FTS methods for point_to_interval forecasting</p>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.get_point_methods">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">get_point_methods</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#get_point_methods"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.get_point_methods" title="Permalink to this definition"></a></dt>
<dd><p>Return all FTS methods for point forecasting</p>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.get_point_multivariate_methods">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">get_point_multivariate_methods</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#get_point_multivariate_methods"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.get_point_multivariate_methods" title="Permalink to this definition"></a></dt>
<dd><p>Return all multivariate FTS methods por point forecasting</p>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.get_probabilistic_methods">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">get_probabilistic_methods</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#get_probabilistic_methods"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.get_probabilistic_methods" title="Permalink to this definition"></a></dt>
<dd><p>Return all FTS methods for probabilistic forecasting</p>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.multivariate_sliding_window_benchmarks2">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">multivariate_sliding_window_benchmarks2</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">windowsize</span></em>, <em class="sig-param"><span class="n">train</span><span class="o">=</span><span class="default_value">0.8</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#multivariate_sliding_window_benchmarks2"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.multivariate_sliding_window_benchmarks2" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.mv_run_interval2">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">mv_run_interval2</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">mfts</span></em>, <em class="sig-param"><span class="n">train_data</span></em>, <em class="sig-param"><span class="n">test_data</span></em>, <em class="sig-param"><span class="n">window_key</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#mv_run_interval2"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.mv_run_interval2" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.mv_run_point2">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">mv_run_point2</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">mfts</span></em>, <em class="sig-param"><span class="n">train_data</span></em>, <em class="sig-param"><span class="n">test_data</span></em>, <em class="sig-param"><span class="n">window_key</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#mv_run_point2"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.mv_run_point2" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.mv_run_probabilistic2">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">mv_run_probabilistic2</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">mfts</span></em>, <em class="sig-param"><span class="n">train_data</span></em>, <em class="sig-param"><span class="n">test_data</span></em>, <em class="sig-param"><span class="n">window_key</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#mv_run_probabilistic2"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.mv_run_probabilistic2" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.pftsExploreOrderAndPartitions">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">pftsExploreOrderAndPartitions</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">save</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">file</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#pftsExploreOrderAndPartitions"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.pftsExploreOrderAndPartitions" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.plotCompared">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">plotCompared</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">original</span></em>, <em class="sig-param"><span class="n">forecasts</span></em>, <em class="sig-param"><span class="n">labels</span></em>, <em class="sig-param"><span class="n">title</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#plotCompared"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.plotCompared" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.plot_compared_series">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">plot_compared_series</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">original</span></em>, <em class="sig-param"><span class="n">models</span></em>, <em class="sig-param"><span class="n">colors</span></em>, <em class="sig-param"><span class="n">typeonlegend</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">save</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">file</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">tam</span><span class="o">=</span><span class="default_value">[20, 5]</span></em>, <em class="sig-param"><span class="n">points</span><span class="o">=</span><span class="default_value">True</span></em>, <em class="sig-param"><span class="n">intervals</span><span class="o">=</span><span class="default_value">True</span></em>, <em class="sig-param"><span class="n">linewidth</span><span class="o">=</span><span class="default_value">1.5</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#plot_compared_series"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.plot_compared_series" title="Permalink to this definition"></a></dt>
<dd><p>Plot the forecasts of several one step ahead models, by point or by interval</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>original</strong> Original time series data (list)</p></li>
<li><p><strong>models</strong> List of models to compare</p></li>
<li><p><strong>colors</strong> List of models colors</p></li>
<li><p><strong>typeonlegend</strong> Add the type of forecast (point / interval) on legend</p></li>
<li><p><strong>save</strong> Save the picture on file</p></li>
<li><p><strong>file</strong> Filename to save the picture</p></li>
<li><p><strong>tam</strong> Size of the picture</p></li>
<li><p><strong>points</strong> True to plot the point forecasts, False otherwise</p></li>
<li><p><strong>intervals</strong> True to plot the interval forecasts, False otherwise</p></li>
<li><p><strong>linewidth</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.plot_point">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">plot_point</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">axis</span></em>, <em class="sig-param"><span class="n">points</span></em>, <em class="sig-param"><span class="n">order</span></em>, <em class="sig-param"><span class="n">label</span></em>, <em class="sig-param"><span class="n">color</span><span class="o">=</span><span class="default_value">'red'</span></em>, <em class="sig-param"><span class="n">ls</span><span class="o">=</span><span class="default_value">'-'</span></em>, <em class="sig-param"><span class="n">linewidth</span><span class="o">=</span><span class="default_value">1</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#plot_point"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.plot_point" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.print_distribution_statistics">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">print_distribution_statistics</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">original</span></em>, <em class="sig-param"><span class="n">models</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="n">resolution</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#print_distribution_statistics"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.print_distribution_statistics" title="Permalink to this definition"></a></dt>
<dd><p>Run probabilistic benchmarks on given models and data and print the results</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> test data</p></li>
<li><p><strong>models</strong> a list of FTS models to benchmark</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.print_interval_statistics">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">print_interval_statistics</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">original</span></em>, <em class="sig-param"><span class="n">models</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#print_interval_statistics"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.print_interval_statistics" title="Permalink to this definition"></a></dt>
<dd><p>Run interval benchmarks on given models and data and print the results</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> test data</p></li>
<li><p><strong>models</strong> a list of FTS models to benchmark</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.print_point_statistics">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">print_point_statistics</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">models</span></em>, <em class="sig-param"><span class="n">externalmodels</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">externalforecasts</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">indexers</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#print_point_statistics"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.print_point_statistics" title="Permalink to this definition"></a></dt>
<dd><p>Run point benchmarks on given models and data and print the results</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> test data</p></li>
<li><p><strong>models</strong> a list of FTS models to benchmark</p></li>
<li><p><strong>externalmodels</strong> a list with benchmark models (façades for other methods)</p></li>
<li><p><strong>externalforecasts</strong> </p></li>
<li><p><strong>indexers</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.process_interval_jobs">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">process_interval_jobs</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">dataset</span></em>, <em class="sig-param"><span class="n">tag</span></em>, <em class="sig-param"><span class="n">job</span></em>, <em class="sig-param"><span class="n">conn</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#process_interval_jobs"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.process_interval_jobs" title="Permalink to this definition"></a></dt>
<dd><p>Extract information from an dictionary with interval benchmark results and save it on a database</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>dataset</strong> the benchmark dataset name</p></li>
<li><p><strong>tag</strong> alias for the benchmark group being executed</p></li>
<li><p><strong>job</strong> a dictionary with the benchmark results</p></li>
<li><p><strong>conn</strong> a connection to a Sqlite database</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.process_interval_jobs2">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">process_interval_jobs2</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">dataset</span></em>, <em class="sig-param"><span class="n">tag</span></em>, <em class="sig-param"><span class="n">job</span></em>, <em class="sig-param"><span class="n">conn</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#process_interval_jobs2"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.process_interval_jobs2" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.process_point_jobs">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">process_point_jobs</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">dataset</span></em>, <em class="sig-param"><span class="n">tag</span></em>, <em class="sig-param"><span class="n">job</span></em>, <em class="sig-param"><span class="n">conn</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#process_point_jobs"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.process_point_jobs" title="Permalink to this definition"></a></dt>
<dd><p>Extract information from a dictionary with point benchmark results and save it on a database</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>dataset</strong> the benchmark dataset name</p></li>
<li><p><strong>tag</strong> alias for the benchmark group being executed</p></li>
<li><p><strong>job</strong> a dictionary with the benchmark results</p></li>
<li><p><strong>conn</strong> a connection to a Sqlite database</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.process_point_jobs2">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">process_point_jobs2</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">dataset</span></em>, <em class="sig-param"><span class="n">tag</span></em>, <em class="sig-param"><span class="n">job</span></em>, <em class="sig-param"><span class="n">conn</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#process_point_jobs2"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.process_point_jobs2" title="Permalink to this definition"></a></dt>
<dd><p>Extract information from a dictionary with point benchmark results and save it on a database</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>dataset</strong> the benchmark dataset name</p></li>
<li><p><strong>tag</strong> alias for the benchmark group being executed</p></li>
<li><p><strong>job</strong> a dictionary with the benchmark results</p></li>
<li><p><strong>conn</strong> a connection to a Sqlite database</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.process_probabilistic_jobs">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">process_probabilistic_jobs</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">dataset</span></em>, <em class="sig-param"><span class="n">tag</span></em>, <em class="sig-param"><span class="n">job</span></em>, <em class="sig-param"><span class="n">conn</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#process_probabilistic_jobs"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.process_probabilistic_jobs" title="Permalink to this definition"></a></dt>
<dd><p>Extract information from an dictionary with probabilistic benchmark results and save it on a database</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>dataset</strong> the benchmark dataset name</p></li>
<li><p><strong>tag</strong> alias for the benchmark group being executed</p></li>
<li><p><strong>job</strong> a dictionary with the benchmark results</p></li>
<li><p><strong>conn</strong> a connection to a Sqlite database</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.process_probabilistic_jobs2">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">process_probabilistic_jobs2</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">dataset</span></em>, <em class="sig-param"><span class="n">tag</span></em>, <em class="sig-param"><span class="n">job</span></em>, <em class="sig-param"><span class="n">conn</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#process_probabilistic_jobs2"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.process_probabilistic_jobs2" title="Permalink to this definition"></a></dt>
<dd><p>Extract information from an dictionary with probabilistic benchmark results and save it on a database</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>dataset</strong> the benchmark dataset name</p></li>
<li><p><strong>tag</strong> alias for the benchmark group being executed</p></li>
<li><p><strong>job</strong> a dictionary with the benchmark results</p></li>
<li><p><strong>conn</strong> a connection to a Sqlite database</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.run_interval">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">run_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">mfts</span></em>, <em class="sig-param"><span class="n">partitioner</span></em>, <em class="sig-param"><span class="n">train_data</span></em>, <em class="sig-param"><span class="n">test_data</span></em>, <em class="sig-param"><span class="n">window_key</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#run_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.run_interval" title="Permalink to this definition"></a></dt>
<dd><p>Run the interval forecasting benchmarks</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>mfts</strong> FTS model</p></li>
<li><p><strong>partitioner</strong> Universe of Discourse partitioner</p></li>
<li><p><strong>train_data</strong> data used to train the model</p></li>
<li><p><strong>test_data</strong> ata used to test the model</p></li>
<li><p><strong>window_key</strong> id of the sliding window</p></li>
<li><p><strong>transformation</strong> data transformation</p></li>
<li><p><strong>indexer</strong> seasonal indexer</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a dictionary with the benchmark results</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.run_interval2">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">run_interval2</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">fts_method</span></em>, <em class="sig-param"><span class="n">order</span></em>, <em class="sig-param"><span class="n">partitioner_method</span></em>, <em class="sig-param"><span class="n">partitions</span></em>, <em class="sig-param"><span class="n">transformation</span></em>, <em class="sig-param"><span class="n">train_data</span></em>, <em class="sig-param"><span class="n">test_data</span></em>, <em class="sig-param"><span class="n">window_key</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#run_interval2"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.run_interval2" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.run_point">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">run_point</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">mfts</span></em>, <em class="sig-param"><span class="n">partitioner</span></em>, <em class="sig-param"><span class="n">train_data</span></em>, <em class="sig-param"><span class="n">test_data</span></em>, <em class="sig-param"><span class="n">window_key</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#run_point"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.run_point" title="Permalink to this definition"></a></dt>
<dd><p>Run the point forecasting benchmarks</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>mfts</strong> FTS model</p></li>
<li><p><strong>partitioner</strong> Universe of Discourse partitioner</p></li>
<li><p><strong>train_data</strong> data used to train the model</p></li>
<li><p><strong>test_data</strong> ata used to test the model</p></li>
<li><p><strong>window_key</strong> id of the sliding window</p></li>
<li><p><strong>transformation</strong> data transformation</p></li>
<li><p><strong>indexer</strong> seasonal indexer</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a dictionary with the benchmark results</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.run_point2">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">run_point2</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">fts_method</span></em>, <em class="sig-param"><span class="n">order</span></em>, <em class="sig-param"><span class="n">partitioner_method</span></em>, <em class="sig-param"><span class="n">partitions</span></em>, <em class="sig-param"><span class="n">transformation</span></em>, <em class="sig-param"><span class="n">train_data</span></em>, <em class="sig-param"><span class="n">test_data</span></em>, <em class="sig-param"><span class="n">window_key</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#run_point2"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.run_point2" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.run_probabilistic">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">run_probabilistic</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">mfts</span></em>, <em class="sig-param"><span class="n">partitioner</span></em>, <em class="sig-param"><span class="n">train_data</span></em>, <em class="sig-param"><span class="n">test_data</span></em>, <em class="sig-param"><span class="n">window_key</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#run_probabilistic"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.run_probabilistic" title="Permalink to this definition"></a></dt>
<dd><p>Run the probabilistic forecasting benchmarks</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>mfts</strong> FTS model</p></li>
<li><p><strong>partitioner</strong> Universe of Discourse partitioner</p></li>
<li><p><strong>train_data</strong> data used to train the model</p></li>
<li><p><strong>test_data</strong> ata used to test the model</p></li>
<li><p><strong>steps</strong> </p></li>
<li><p><strong>resolution</strong> </p></li>
<li><p><strong>window_key</strong> id of the sliding window</p></li>
<li><p><strong>transformation</strong> data transformation</p></li>
<li><p><strong>indexer</strong> seasonal indexer</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a dictionary with the benchmark results</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.run_probabilistic2">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">run_probabilistic2</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">fts_method</span></em>, <em class="sig-param"><span class="n">order</span></em>, <em class="sig-param"><span class="n">partitioner_method</span></em>, <em class="sig-param"><span class="n">partitions</span></em>, <em class="sig-param"><span class="n">transformation</span></em>, <em class="sig-param"><span class="n">train_data</span></em>, <em class="sig-param"><span class="n">test_data</span></em>, <em class="sig-param"><span class="n">window_key</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#run_probabilistic2"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.run_probabilistic2" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.simpleSearch_RMSE">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">simpleSearch_RMSE</code><span class="sig-paren">(</span><em class="sig-param">train, test, model, partitions, orders, save=False, file=None, tam=[10, 15], plotforecasts=False, elev=30, azim=144, intervals=False, parameters=None, partitioner=&lt;class 'pyFTS.partitioners.Grid.GridPartitioner'&gt;, transformation=None, indexer=None</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#simpleSearch_RMSE"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.simpleSearch_RMSE" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.sliding_window_benchmarks">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">sliding_window_benchmarks</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">windowsize</span></em>, <em class="sig-param"><span class="n">train</span><span class="o">=</span><span class="default_value">0.8</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#sliding_window_benchmarks"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.sliding_window_benchmarks" title="Permalink to this definition"></a></dt>
<dd><p>Sliding window benchmarks for FTS forecasters.</p>
<p>For each data window, a train and test datasets will be splitted. For each train split, number of
partitions and partitioning method will be created a partitioner model. And for each partitioner, order,
steps ahead and FTS method a foreasting model will be trained.</p>
<p>Then all trained models are benchmarked on the test data and the metrics are stored on a sqlite3 database
(identified by the file parameter) for posterior analysis.</p>
<p>All these process can be distributed on a dispy cluster, setting the atributed distributed to true and
informing the list of dispy nodes on nodes parameter.</p>
<p>The number of experiments is determined by windowsize and inc parameters.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> test data</p></li>
<li><p><strong>windowsize</strong> size of sliding window</p></li>
<li><p><strong>train</strong> percentual of sliding window data used to train the models</p></li>
<li><p><strong>kwargs</strong> dict, optional arguments</p></li>
<li><p><strong>benchmark_methods</strong> a list with Non FTS models to benchmark. The default is None.</p></li>
<li><p><strong>benchmark_methods_parameters</strong> a list with Non FTS models parameters. The default is None.</p></li>
<li><p><strong>benchmark_models</strong> A boolean value indicating if external FTS methods will be used on benchmark. The default is False.</p></li>
<li><p><strong>build_methods</strong> A boolean value indicating if the default FTS methods will be used on benchmark. The default is True.</p></li>
<li><p><strong>dataset</strong> the dataset name to identify the current set of benchmarks results on database.</p></li>
<li><p><strong>distributed</strong> A boolean value indicating if the forecasting procedure will be distributed in a dispy cluster. . The default is False</p></li>
<li><p><strong>file</strong> file path to save the results. The default is benchmarks.db.</p></li>
<li><p><strong>inc</strong> a float on interval [0,1] indicating the percentage of the windowsize to move the window</p></li>
<li><p><strong>methods</strong> a list with FTS class names. The default depends on the forecasting type and contains the list of all FTS methods.</p></li>
<li><p><strong>models</strong> a list with prebuilt FTS objects. The default is None.</p></li>
<li><p><strong>nodes</strong> a list with the dispy cluster nodes addresses. The default is [127.0.0.1].</p></li>
<li><p><strong>orders</strong> a list with orders of the models (for high order models). The default is [1,2,3].</p></li>
<li><p><strong>partitions</strong> a list with the numbers of partitions on the Universe of Discourse. The default is [10].</p></li>
<li><p><strong>partitioners_models</strong> a list with prebuilt Universe of Discourse partitioners objects. The default is None.</p></li>
<li><p><strong>partitioners_methods</strong> a list with Universe of Discourse partitioners class names. The default is [partitioners.Grid.GridPartitioner].</p></li>
<li><p><strong>progress</strong> If true a progress bar will be displayed during the benchmarks. The default is False.</p></li>
<li><p><strong>start</strong> in the multi step forecasting, the index of the data where to start forecasting. The default is 0.</p></li>
<li><p><strong>steps_ahead</strong> a list with the forecasting horizons, i. e., the number of steps ahead to forecast. The default is 1.</p></li>
<li><p><strong>tag</strong> a name to identify the current set of benchmarks results on database.</p></li>
<li><p><strong>type</strong> the forecasting type, one of these values: point(default), interval or distribution. The default is point.</p></li>
<li><p><strong>transformations</strong> a list with data transformations do apply . The default is [None].</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.sliding_window_benchmarks2">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">sliding_window_benchmarks2</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">windowsize</span></em>, <em class="sig-param"><span class="n">train</span><span class="o">=</span><span class="default_value">0.8</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#sliding_window_benchmarks2"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.sliding_window_benchmarks2" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.benchmarks.train_test_time">
<code class="sig-prename descclassname">pyFTS.benchmarks.benchmarks.</code><code class="sig-name descname">train_test_time</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">windowsize</span></em>, <em class="sig-param"><span class="n">train</span><span class="o">=</span><span class="default_value">0.8</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/benchmarks.html#train_test_time"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.benchmarks.train_test_time" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</div>
<div class="section" id="module-pyFTS.benchmarks.Measures">
<span id="pyfts-benchmarks-measures-module"></span><h2>pyFTS.benchmarks.Measures module<a class="headerlink" href="#module-pyFTS.benchmarks.Measures" title="Permalink to this headline"></a></h2>
<p>pyFTS module for common benchmark metrics</p>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.TheilsInequality">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">TheilsInequality</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">targets</span></em>, <em class="sig-param"><span class="n">forecasts</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#TheilsInequality"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.TheilsInequality" title="Permalink to this definition"></a></dt>
<dd><p>Theils Inequality Coefficient</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>targets</strong> </p></li>
<li><p><strong>forecasts</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.UStatistic">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">UStatistic</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">targets</span></em>, <em class="sig-param"><span class="n">forecasts</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#UStatistic"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.UStatistic" title="Permalink to this definition"></a></dt>
<dd><p>Theils U Statistic</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>targets</strong> </p></li>
<li><p><strong>forecasts</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.acf">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">acf</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">k</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#acf"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.acf" title="Permalink to this definition"></a></dt>
<dd><p>Autocorrelation function estimative</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> </p></li>
<li><p><strong>k</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.brier_score">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">brier_score</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">targets</span></em>, <em class="sig-param"><span class="n">densities</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#brier_score"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.brier_score" title="Permalink to this definition"></a></dt>
<dd><p>Brier Score for probabilistic forecasts.
Brier (1950). “Verification of Forecasts Expressed in Terms of Probability”. Monthly Weather Review. 78: 13.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>targets</strong> a list with the target values</p></li>
<li><p><strong>densities</strong> a list with pyFTS.probabil objectsistic.ProbabilityDistribution</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>float</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.coverage">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">coverage</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">targets</span></em>, <em class="sig-param"><span class="n">forecasts</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#coverage"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.coverage" title="Permalink to this definition"></a></dt>
<dd><p>Percent of target values that fall inside forecasted interval</p>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.crps">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">crps</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">targets</span></em>, <em class="sig-param"><span class="n">densities</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#crps"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.crps" title="Permalink to this definition"></a></dt>
<dd><p>Continuous Ranked Probability Score</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>targets</strong> a list with the target values</p></li>
<li><p><strong>densities</strong> a list with pyFTS.probabil objectsistic.ProbabilityDistribution</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>float</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.get_distribution_ahead_statistics">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">get_distribution_ahead_statistics</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">distributions</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#get_distribution_ahead_statistics"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.get_distribution_ahead_statistics" title="Permalink to this definition"></a></dt>
<dd><p>Get CRPS statistic and time for a forecasting model</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> test data</p></li>
<li><p><strong>model</strong> FTS model with probabilistic forecasting capability</p></li>
<li><p><strong>kwargs</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the CRPS and execution time</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.get_distribution_statistics">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">get_distribution_statistics</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">model</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#get_distribution_statistics"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.get_distribution_statistics" title="Permalink to this definition"></a></dt>
<dd><p>Get CRPS statistic and time for a forecasting model</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> test data</p></li>
<li><p><strong>model</strong> FTS model with probabilistic forecasting capability</p></li>
<li><p><strong>kwargs</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the CRPS and execution time</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.get_interval_ahead_statistics">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">get_interval_ahead_statistics</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">intervals</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#get_interval_ahead_statistics"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.get_interval_ahead_statistics" title="Permalink to this definition"></a></dt>
<dd><p>Condensate all measures for point interval forecasters</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> test data</p></li>
<li><p><strong>intervals</strong> predicted intervals for each datapoint</p></li>
<li><p><strong>kwargs</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the sharpness, resolution, coverage, .05 pinball mean,
.25 pinball mean, .75 pinball mean and .95 pinball mean.</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.get_interval_statistics">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">get_interval_statistics</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">model</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#get_interval_statistics"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.get_interval_statistics" title="Permalink to this definition"></a></dt>
<dd><p>Condensate all measures for point interval forecasters</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> test data</p></li>
<li><p><strong>model</strong> FTS model with interval forecasting capability</p></li>
<li><p><strong>kwargs</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the sharpness, resolution, coverage, .05 pinball mean,
.25 pinball mean, .75 pinball mean and .95 pinball mean.</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.get_point_ahead_statistics">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">get_point_ahead_statistics</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">forecasts</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#get_point_ahead_statistics"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.get_point_ahead_statistics" title="Permalink to this definition"></a></dt>
<dd><p>Condensate all measures for point forecasters</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> test data</p></li>
<li><p><strong>model</strong> FTS model with point forecasting capability</p></li>
<li><p><strong>kwargs</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the RMSE, SMAPE and U Statistic</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.get_point_statistics">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">get_point_statistics</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">model</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#get_point_statistics"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.get_point_statistics" title="Permalink to this definition"></a></dt>
<dd><p>Condensate all measures for point forecasters</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> test data</p></li>
<li><p><strong>model</strong> FTS model with point forecasting capability</p></li>
<li><p><strong>kwargs</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the RMSE, SMAPE and U Statistic</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.logarithm_score">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">logarithm_score</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">targets</span></em>, <em class="sig-param"><span class="n">densities</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#logarithm_score"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.logarithm_score" title="Permalink to this definition"></a></dt>
<dd><p>Logarithm Score for probabilistic forecasts.
Good IJ (1952). “Rational Decisions.”Journal of the Royal Statistical Society B,14(1),107114. URLhttps://www.jstor.org/stable/2984087.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>targets</strong> a list with the target values</p></li>
<li><p><strong>densities</strong> a list with pyFTS.probabil objectsistic.ProbabilityDistribution</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>float</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.mape">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">mape</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">targets</span></em>, <em class="sig-param"><span class="n">forecasts</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#mape"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.mape" title="Permalink to this definition"></a></dt>
<dd><p>Mean Average Percentual Error</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>targets</strong> </p></li>
<li><p><strong>forecasts</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.mape_interval">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">mape_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">targets</span></em>, <em class="sig-param"><span class="n">forecasts</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#mape_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.mape_interval" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.pinball">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">pinball</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">tau</span></em>, <em class="sig-param"><span class="n">target</span></em>, <em class="sig-param"><span class="n">forecast</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#pinball"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.pinball" title="Permalink to this definition"></a></dt>
<dd><p>Pinball loss function. Measure the distance of forecast to the tau-quantile of the target</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>tau</strong> quantile value in the range (0,1)</p></li>
<li><p><strong>target</strong> </p></li>
<li><p><strong>forecast</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>float, distance of forecast to the tau-quantile of the target</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.pinball_mean">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">pinball_mean</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">tau</span></em>, <em class="sig-param"><span class="n">targets</span></em>, <em class="sig-param"><span class="n">forecasts</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#pinball_mean"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.pinball_mean" title="Permalink to this definition"></a></dt>
<dd><p>Mean pinball loss value of the forecast for a given tau-quantile of the targets</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>tau</strong> quantile value in the range (0,1)</p></li>
<li><p><strong>targets</strong> list of target values</p></li>
<li><p><strong>forecasts</strong> list of prediction intervals</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>float, the pinball loss mean for tau quantile</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.resolution">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">resolution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">forecasts</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#resolution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.resolution" title="Permalink to this definition"></a></dt>
<dd><p>Resolution - Standard deviation of the intervals</p>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.rmse">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">rmse</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">targets</span></em>, <em class="sig-param"><span class="n">forecasts</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#rmse"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.rmse" title="Permalink to this definition"></a></dt>
<dd><p>Root Mean Squared Error</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>targets</strong> </p></li>
<li><p><strong>forecasts</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.rmse_interval">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">rmse_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">targets</span></em>, <em class="sig-param"><span class="n">forecasts</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#rmse_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.rmse_interval" title="Permalink to this definition"></a></dt>
<dd><p>Root Mean Squared Error</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>targets</strong> </p></li>
<li><p><strong>forecasts</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.sharpness">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">sharpness</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">forecasts</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#sharpness"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.sharpness" title="Permalink to this definition"></a></dt>
<dd><p>Sharpness - Mean size of the intervals</p>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.smape">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">smape</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">targets</span></em>, <em class="sig-param"><span class="n">forecasts</span></em>, <em class="sig-param"><span class="n">type</span><span class="o">=</span><span class="default_value">2</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#smape"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.smape" title="Permalink to this definition"></a></dt>
<dd><p>Symmetric Mean Average Percentual Error</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>targets</strong> </p></li>
<li><p><strong>forecasts</strong> </p></li>
<li><p><strong>type</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.winkler_mean">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">winkler_mean</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">tau</span></em>, <em class="sig-param"><span class="n">targets</span></em>, <em class="sig-param"><span class="n">forecasts</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#winkler_mean"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.winkler_mean" title="Permalink to this definition"></a></dt>
<dd><p>Mean Winkler score value of the forecast for a given tau-quantile of the targets</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>tau</strong> quantile value in the range (0,1)</p></li>
<li><p><strong>targets</strong> list of target values</p></li>
<li><p><strong>forecasts</strong> list of prediction intervals</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>float, the Winkler score mean for tau quantile</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Measures.winkler_score">
<code class="sig-prename descclassname">pyFTS.benchmarks.Measures.</code><code class="sig-name descname">winkler_score</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">tau</span></em>, <em class="sig-param"><span class="n">target</span></em>, <em class="sig-param"><span class="n">forecast</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Measures.html#winkler_score"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Measures.winkler_score" title="Permalink to this definition"></a></dt>
<dd><ol class="upperalpha simple" start="18">
<li><ol class="upperalpha simple" start="12">
<li><p>Winkler, A Decision-Theoretic Approach to Interval Estimation, J. Am. Stat. Assoc. 67 (337) (1972) 187191. doi:10.2307/2284720.</p></li>
</ol>
</li>
</ol>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>tau</strong> </p></li>
<li><p><strong>target</strong> </p></li>
<li><p><strong>forecast</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.benchmarks.ResidualAnalysis">
<span id="pyfts-benchmarks-residualanalysis-module"></span><h2>pyFTS.benchmarks.ResidualAnalysis module<a class="headerlink" href="#module-pyFTS.benchmarks.ResidualAnalysis" title="Permalink to this headline"></a></h2>
<p>Residual Analysis methods</p>
<dl class="py function">
<dt id="pyFTS.benchmarks.ResidualAnalysis.compare_residuals">
<code class="sig-prename descclassname">pyFTS.benchmarks.ResidualAnalysis.</code><code class="sig-name descname">compare_residuals</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">models</span></em>, <em class="sig-param"><span class="n">alpha</span><span class="o">=</span><span class="default_value">0.05</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/ResidualAnalysis.html#compare_residuals"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.ResidualAnalysis.compare_residuals" title="Permalink to this definition"></a></dt>
<dd><p>Compare residuals statistics of several models</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> test data</p></li>
<li><p><strong>models</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a Pandas dataframe with the Box-Ljung statistic for each model</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.ResidualAnalysis.ljung_box_test">
<code class="sig-prename descclassname">pyFTS.benchmarks.ResidualAnalysis.</code><code class="sig-name descname">ljung_box_test</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">residuals</span></em>, <em class="sig-param"><span class="n">lags</span><span class="o">=</span><span class="default_value">[1, 2, 3]</span></em>, <em class="sig-param"><span class="n">alpha</span><span class="o">=</span><span class="default_value">0.5</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/ResidualAnalysis.html#ljung_box_test"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.ResidualAnalysis.ljung_box_test" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.ResidualAnalysis.plot_residuals_by_model">
<code class="sig-prename descclassname">pyFTS.benchmarks.ResidualAnalysis.</code><code class="sig-name descname">plot_residuals_by_model</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">targets</span></em>, <em class="sig-param"><span class="n">models</span></em>, <em class="sig-param"><span class="n">tam</span><span class="o">=</span><span class="default_value">[8, 8]</span></em>, <em class="sig-param"><span class="n">save</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">file</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/ResidualAnalysis.html#plot_residuals_by_model"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.ResidualAnalysis.plot_residuals_by_model" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.ResidualAnalysis.residuals">
<code class="sig-prename descclassname">pyFTS.benchmarks.ResidualAnalysis.</code><code class="sig-name descname">residuals</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">targets</span></em>, <em class="sig-param"><span class="n">forecasts</span></em>, <em class="sig-param"><span class="n">order</span><span class="o">=</span><span class="default_value">1</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/ResidualAnalysis.html#residuals"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.ResidualAnalysis.residuals" title="Permalink to this definition"></a></dt>
<dd><p>First order residuals</p>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.ResidualAnalysis.single_plot_residuals">
<code class="sig-prename descclassname">pyFTS.benchmarks.ResidualAnalysis.</code><code class="sig-name descname">single_plot_residuals</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">res</span></em>, <em class="sig-param"><span class="n">order</span></em>, <em class="sig-param"><span class="n">tam</span><span class="o">=</span><span class="default_value">[10, 7]</span></em>, <em class="sig-param"><span class="n">save</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">file</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/ResidualAnalysis.html#single_plot_residuals"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.ResidualAnalysis.single_plot_residuals" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</div>
<div class="section" id="module-pyFTS.benchmarks.Tests">
<span id="pyfts-benchmarks-tests-module"></span><h2>pyFTS.benchmarks.Tests module<a class="headerlink" href="#module-pyFTS.benchmarks.Tests" title="Permalink to this headline"></a></h2>
<dl class="py function">
<dt id="pyFTS.benchmarks.Tests.BoxLjungStatistic">
<code class="sig-prename descclassname">pyFTS.benchmarks.Tests.</code><code class="sig-name descname">BoxLjungStatistic</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">h</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Tests.html#BoxLjungStatistic"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Tests.BoxLjungStatistic" title="Permalink to this definition"></a></dt>
<dd><p>Q Statistic for LjungBox test</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> </p></li>
<li><p><strong>h</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Tests.BoxPierceStatistic">
<code class="sig-prename descclassname">pyFTS.benchmarks.Tests.</code><code class="sig-name descname">BoxPierceStatistic</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">h</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Tests.html#BoxPierceStatistic"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Tests.BoxPierceStatistic" title="Permalink to this definition"></a></dt>
<dd><p>Q Statistic for Box-Pierce test</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> </p></li>
<li><p><strong>h</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Tests.format_experiment_table">
<code class="sig-prename descclassname">pyFTS.benchmarks.Tests.</code><code class="sig-name descname">format_experiment_table</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">df</span></em>, <em class="sig-param"><span class="n">exclude</span><span class="o">=</span><span class="default_value">[]</span></em>, <em class="sig-param"><span class="n">replace</span><span class="o">=</span><span class="default_value">{}</span></em>, <em class="sig-param"><span class="n">csv</span><span class="o">=</span><span class="default_value">True</span></em>, <em class="sig-param"><span class="n">std</span><span class="o">=</span><span class="default_value">False</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Tests.html#format_experiment_table"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Tests.format_experiment_table" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Tests.post_hoc_tests">
<code class="sig-prename descclassname">pyFTS.benchmarks.Tests.</code><code class="sig-name descname">post_hoc_tests</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">post_hoc</span></em>, <em class="sig-param"><span class="n">control_method</span></em>, <em class="sig-param"><span class="n">alpha</span><span class="o">=</span><span class="default_value">0.05</span></em>, <em class="sig-param"><span class="n">method</span><span class="o">=</span><span class="default_value">'finner'</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Tests.html#post_hoc_tests"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Tests.post_hoc_tests" title="Permalink to this definition"></a></dt>
<dd><p>Finner paired post-hoc test with NSFTS as control method.</p>
<p>$H_0$: There is no significant difference between the means</p>
<p>$H_1$: There is a significant difference between the means</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>post_hoc</strong> </p></li>
<li><p><strong>control_method</strong> </p></li>
<li><p><strong>alpha</strong> </p></li>
<li><p><strong>method</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Tests.test_mean_equality">
<code class="sig-prename descclassname">pyFTS.benchmarks.Tests.</code><code class="sig-name descname">test_mean_equality</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">tests</span></em>, <em class="sig-param"><span class="n">alpha</span><span class="o">=</span><span class="default_value">0.05</span></em>, <em class="sig-param"><span class="n">method</span><span class="o">=</span><span class="default_value">'friedman'</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Tests.html#test_mean_equality"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Tests.test_mean_equality" title="Permalink to this definition"></a></dt>
<dd><p>Test for the equality of the means, with alpha confidence level.</p>
<p>H_0: Theres no significant difference between the means
H_1: There is at least one significant difference between the means</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>tests</strong> </p></li>
<li><p><strong>alpha</strong> </p></li>
<li><p><strong>method</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.benchmarks.Util">
<span id="pyfts-benchmarks-util-module"></span><h2>pyFTS.benchmarks.Util module<a class="headerlink" href="#module-pyFTS.benchmarks.Util" title="Permalink to this headline"></a></h2>
<p>Facilities for pyFTS Benchmark module</p>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.analytic_tabular_dataframe">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">analytic_tabular_dataframe</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">dataframe</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#analytic_tabular_dataframe"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.analytic_tabular_dataframe" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.analytical_data_columns">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">analytical_data_columns</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">experiments</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#analytical_data_columns"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.analytical_data_columns" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.base_dataframe_columns">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">base_dataframe_columns</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#base_dataframe_columns"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.base_dataframe_columns" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.cast_dataframe_to_synthetic">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">cast_dataframe_to_synthetic</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">infile</span></em>, <em class="sig-param"><span class="n">outfile</span></em>, <em class="sig-param"><span class="n">experiments</span></em>, <em class="sig-param"><span class="n">type</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#cast_dataframe_to_synthetic"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.cast_dataframe_to_synthetic" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.cast_dataframe_to_synthetic_interval">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">cast_dataframe_to_synthetic_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">df</span></em>, <em class="sig-param"><span class="n">data_columns</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#cast_dataframe_to_synthetic_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.cast_dataframe_to_synthetic_interval" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.cast_dataframe_to_synthetic_point">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">cast_dataframe_to_synthetic_point</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">df</span></em>, <em class="sig-param"><span class="n">data_columns</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#cast_dataframe_to_synthetic_point"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.cast_dataframe_to_synthetic_point" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.cast_dataframe_to_synthetic_probabilistic">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">cast_dataframe_to_synthetic_probabilistic</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">df</span></em>, <em class="sig-param"><span class="n">data_columns</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#cast_dataframe_to_synthetic_probabilistic"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.cast_dataframe_to_synthetic_probabilistic" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.check_ignore_list">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">check_ignore_list</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">b</span></em>, <em class="sig-param"><span class="n">ignore</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#check_ignore_list"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.check_ignore_list" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.check_replace_list">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">check_replace_list</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">m</span></em>, <em class="sig-param"><span class="n">replace</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#check_replace_list"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.check_replace_list" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.create_benchmark_tables">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">create_benchmark_tables</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">conn</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#create_benchmark_tables"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.create_benchmark_tables" title="Permalink to this definition"></a></dt>
<dd><p>Create a sqlite3 table designed to store benchmark results.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>conn</strong> a sqlite3 database connection</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.extract_measure">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">extract_measure</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">dataframe</span></em>, <em class="sig-param"><span class="n">measure</span></em>, <em class="sig-param"><span class="n">data_columns</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#extract_measure"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.extract_measure" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.find_best">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">find_best</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">dataframe</span></em>, <em class="sig-param"><span class="n">criteria</span></em>, <em class="sig-param"><span class="n">ascending</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#find_best"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.find_best" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.get_dataframe_from_bd">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">get_dataframe_from_bd</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">file</span></em>, <em class="sig-param"><span class="n">filter</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#get_dataframe_from_bd"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.get_dataframe_from_bd" title="Permalink to this definition"></a></dt>
<dd><p>Query the sqlite benchmark database and return a pandas dataframe with the results</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>file</strong> the url of the benchmark database</p></li>
<li><p><strong>filter</strong> sql conditions to filter</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>pandas dataframe with the query results</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.insert_benchmark">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">insert_benchmark</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">conn</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#insert_benchmark"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.insert_benchmark" title="Permalink to this definition"></a></dt>
<dd><p>Insert benchmark data on database</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>data</strong> a tuple with the benchmark data with format:</p>
</dd>
</dl>
<p>ID: integer incremental primary key
Date: Date/hour of benchmark execution
Dataset: Identify on which dataset the dataset was performed
Tag: a user defined word that indentify a benchmark set
Type: forecasting type (point, interval, distribution)
Model: FTS model
Transformation: The name of data transformation, if one was used
Order: the order of the FTS method
Scheme: UoD partitioning scheme
Partitions: Number of partitions
Size: Number of rules of the FTS model
Steps: prediction horizon, i. e., the number of steps ahead
Measure: accuracy measure
Value: the measure value</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>conn</strong> a sqlite3 database connection</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.interval_dataframe_analytic_columns">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">interval_dataframe_analytic_columns</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">experiments</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#interval_dataframe_analytic_columns"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.interval_dataframe_analytic_columns" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.interval_dataframe_synthetic_columns">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">interval_dataframe_synthetic_columns</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#interval_dataframe_synthetic_columns"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.interval_dataframe_synthetic_columns" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.open_benchmark_db">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">open_benchmark_db</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">name</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#open_benchmark_db"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.open_benchmark_db" title="Permalink to this definition"></a></dt>
<dd><p>Open a connection with a Sqlite database designed to store benchmark results.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>name</strong> database filenem</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a sqlite3 database connection</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.plot_dataframe_interval">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">plot_dataframe_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">file_synthetic</span></em>, <em class="sig-param"><span class="n">file_analytic</span></em>, <em class="sig-param"><span class="n">experiments</span></em>, <em class="sig-param"><span class="n">tam</span></em>, <em class="sig-param"><span class="n">save</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">file</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">sort_columns</span><span class="o">=</span><span class="default_value">['COVAVG', 'SHARPAVG', 'COVSTD', 'SHARPSTD']</span></em>, <em class="sig-param"><span class="n">sort_ascend</span><span class="o">=</span><span class="default_value">[True, False, True, True]</span></em>, <em class="sig-param"><span class="n">save_best</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">ignore</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">replace</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#plot_dataframe_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.plot_dataframe_interval" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.plot_dataframe_interval_pinball">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">plot_dataframe_interval_pinball</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">file_synthetic</span></em>, <em class="sig-param"><span class="n">file_analytic</span></em>, <em class="sig-param"><span class="n">experiments</span></em>, <em class="sig-param"><span class="n">tam</span></em>, <em class="sig-param"><span class="n">save</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">file</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">sort_columns</span><span class="o">=</span><span class="default_value">['COVAVG', 'SHARPAVG', 'COVSTD', 'SHARPSTD']</span></em>, <em class="sig-param"><span class="n">sort_ascend</span><span class="o">=</span><span class="default_value">[True, False, True, True]</span></em>, <em class="sig-param"><span class="n">save_best</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">ignore</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">replace</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#plot_dataframe_interval_pinball"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.plot_dataframe_interval_pinball" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.plot_dataframe_point">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">plot_dataframe_point</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">file_synthetic</span></em>, <em class="sig-param"><span class="n">file_analytic</span></em>, <em class="sig-param"><span class="n">experiments</span></em>, <em class="sig-param"><span class="n">tam</span></em>, <em class="sig-param"><span class="n">save</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">file</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">sort_columns</span><span class="o">=</span><span class="default_value">['UAVG', 'RMSEAVG', 'USTD', 'RMSESTD']</span></em>, <em class="sig-param"><span class="n">sort_ascend</span><span class="o">=</span><span class="default_value">[1, 1, 1, 1]</span></em>, <em class="sig-param"><span class="n">save_best</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">ignore</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">replace</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#plot_dataframe_point"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.plot_dataframe_point" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.plot_dataframe_probabilistic">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">plot_dataframe_probabilistic</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">file_synthetic</span></em>, <em class="sig-param"><span class="n">file_analytic</span></em>, <em class="sig-param"><span class="n">experiments</span></em>, <em class="sig-param"><span class="n">tam</span></em>, <em class="sig-param"><span class="n">save</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">file</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">sort_columns</span><span class="o">=</span><span class="default_value">['CRPS1AVG', 'CRPS2AVG', 'CRPS1STD', 'CRPS2STD']</span></em>, <em class="sig-param"><span class="n">sort_ascend</span><span class="o">=</span><span class="default_value">[True, True, True, True]</span></em>, <em class="sig-param"><span class="n">save_best</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">ignore</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">replace</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#plot_dataframe_probabilistic"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.plot_dataframe_probabilistic" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.point_dataframe_analytic_columns">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">point_dataframe_analytic_columns</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">experiments</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#point_dataframe_analytic_columns"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.point_dataframe_analytic_columns" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.point_dataframe_synthetic_columns">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">point_dataframe_synthetic_columns</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#point_dataframe_synthetic_columns"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.point_dataframe_synthetic_columns" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.probabilistic_dataframe_analytic_columns">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">probabilistic_dataframe_analytic_columns</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">experiments</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#probabilistic_dataframe_analytic_columns"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.probabilistic_dataframe_analytic_columns" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.probabilistic_dataframe_synthetic_columns">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">probabilistic_dataframe_synthetic_columns</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#probabilistic_dataframe_synthetic_columns"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.probabilistic_dataframe_synthetic_columns" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.process_common_data">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">process_common_data</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">dataset</span></em>, <em class="sig-param"><span class="n">tag</span></em>, <em class="sig-param"><span class="n">type</span></em>, <em class="sig-param"><span class="n">job</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#process_common_data"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.process_common_data" title="Permalink to this definition"></a></dt>
<dd><p>Wraps benchmark information on a tuple for sqlite database</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>dataset</strong> benchmark dataset</p></li>
<li><p><strong>tag</strong> benchmark set alias</p></li>
<li><p><strong>type</strong> forecasting type</p></li>
<li><p><strong>job</strong> a dictionary with benchmark data</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>tuple for sqlite database</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.process_common_data2">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">process_common_data2</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">dataset</span></em>, <em class="sig-param"><span class="n">tag</span></em>, <em class="sig-param"><span class="n">type</span></em>, <em class="sig-param"><span class="n">job</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#process_common_data2"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.process_common_data2" title="Permalink to this definition"></a></dt>
<dd><p>Wraps benchmark information on a tuple for sqlite database</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>dataset</strong> benchmark dataset</p></li>
<li><p><strong>tag</strong> benchmark set alias</p></li>
<li><p><strong>type</strong> forecasting type</p></li>
<li><p><strong>job</strong> a dictionary with benchmark data</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>tuple for sqlite database</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.save_dataframe_interval">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">save_dataframe_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">coverage</span></em>, <em class="sig-param"><span class="n">experiments</span></em>, <em class="sig-param"><span class="n">file</span></em>, <em class="sig-param"><span class="n">objs</span></em>, <em class="sig-param"><span class="n">resolution</span></em>, <em class="sig-param"><span class="n">save</span></em>, <em class="sig-param"><span class="n">sharpness</span></em>, <em class="sig-param"><span class="n">synthetic</span></em>, <em class="sig-param"><span class="n">times</span></em>, <em class="sig-param"><span class="n">q05</span></em>, <em class="sig-param"><span class="n">q25</span></em>, <em class="sig-param"><span class="n">q75</span></em>, <em class="sig-param"><span class="n">q95</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="n">method</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#save_dataframe_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.save_dataframe_interval" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.save_dataframe_point">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">save_dataframe_point</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">experiments</span></em>, <em class="sig-param"><span class="n">file</span></em>, <em class="sig-param"><span class="n">objs</span></em>, <em class="sig-param"><span class="n">rmse</span></em>, <em class="sig-param"><span class="n">save</span></em>, <em class="sig-param"><span class="n">synthetic</span></em>, <em class="sig-param"><span class="n">smape</span></em>, <em class="sig-param"><span class="n">times</span></em>, <em class="sig-param"><span class="n">u</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="n">method</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#save_dataframe_point"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.save_dataframe_point" title="Permalink to this definition"></a></dt>
<dd><p>Create a dataframe to store the benchmark results</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>experiments</strong> dictionary with the execution results</p></li>
<li><p><strong>file</strong> </p></li>
<li><p><strong>objs</strong> </p></li>
<li><p><strong>rmse</strong> </p></li>
<li><p><strong>save</strong> </p></li>
<li><p><strong>synthetic</strong> </p></li>
<li><p><strong>smape</strong> </p></li>
<li><p><strong>times</strong> </p></li>
<li><p><strong>u</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.save_dataframe_probabilistic">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">save_dataframe_probabilistic</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">experiments</span></em>, <em class="sig-param"><span class="n">file</span></em>, <em class="sig-param"><span class="n">objs</span></em>, <em class="sig-param"><span class="n">crps</span></em>, <em class="sig-param"><span class="n">times</span></em>, <em class="sig-param"><span class="n">save</span></em>, <em class="sig-param"><span class="n">synthetic</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="n">method</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#save_dataframe_probabilistic"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.save_dataframe_probabilistic" title="Permalink to this definition"></a></dt>
<dd><p>Save benchmark results for m-step ahead probabilistic forecasters
:param experiments:
:param file:
:param objs:
:param crps_interval:
:param crps_distr:
:param times:
:param times2:
:param save:
:param synthetic:
:return:</p>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.scale">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">scale</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">params</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#scale"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.scale" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.scale_params">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">scale_params</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#scale_params"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.scale_params" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.simple_synthetic_dataframe">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">simple_synthetic_dataframe</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">file</span></em>, <em class="sig-param"><span class="n">tag</span></em>, <em class="sig-param"><span class="n">measure</span></em>, <em class="sig-param"><span class="n">sql</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#simple_synthetic_dataframe"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.simple_synthetic_dataframe" title="Permalink to this definition"></a></dt>
<dd><p>Read experiments results from sqlite3 database in file, make a synthesis of the results
of the metric measure with the same tag, returning a Pandas DataFrame with the mean results.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>file</strong> sqlite3 database file name</p></li>
<li><p><strong>tag</strong> common tag of the experiments</p></li>
<li><p><strong>measure</strong> metric to synthetize</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>Pandas DataFrame with the mean results</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.stats">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">stats</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">measure</span></em>, <em class="sig-param"><span class="n">data</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#stats"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.stats" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.tabular_dataframe_columns">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">tabular_dataframe_columns</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#tabular_dataframe_columns"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.tabular_dataframe_columns" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.unified_scaled_interval">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">unified_scaled_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">experiments</span></em>, <em class="sig-param"><span class="n">tam</span></em>, <em class="sig-param"><span class="n">save</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">file</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">sort_columns</span><span class="o">=</span><span class="default_value">['COVAVG', 'SHARPAVG', 'COVSTD', 'SHARPSTD']</span></em>, <em class="sig-param"><span class="n">sort_ascend</span><span class="o">=</span><span class="default_value">[True, False, True, True]</span></em>, <em class="sig-param"><span class="n">save_best</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">ignore</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">replace</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#unified_scaled_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.unified_scaled_interval" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.unified_scaled_interval_pinball">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">unified_scaled_interval_pinball</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">experiments</span></em>, <em class="sig-param"><span class="n">tam</span></em>, <em class="sig-param"><span class="n">save</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">file</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">sort_columns</span><span class="o">=</span><span class="default_value">['COVAVG', 'SHARPAVG', 'COVSTD', 'SHARPSTD']</span></em>, <em class="sig-param"><span class="n">sort_ascend</span><span class="o">=</span><span class="default_value">[True, False, True, True]</span></em>, <em class="sig-param"><span class="n">save_best</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">ignore</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">replace</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#unified_scaled_interval_pinball"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.unified_scaled_interval_pinball" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.unified_scaled_point">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">unified_scaled_point</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">experiments</span></em>, <em class="sig-param"><span class="n">tam</span></em>, <em class="sig-param"><span class="n">save</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">file</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">sort_columns</span><span class="o">=</span><span class="default_value">['UAVG', 'RMSEAVG', 'USTD', 'RMSESTD']</span></em>, <em class="sig-param"><span class="n">sort_ascend</span><span class="o">=</span><span class="default_value">[1, 1, 1, 1]</span></em>, <em class="sig-param"><span class="n">save_best</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">ignore</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">replace</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#unified_scaled_point"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.unified_scaled_point" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.benchmarks.Util.unified_scaled_probabilistic">
<code class="sig-prename descclassname">pyFTS.benchmarks.Util.</code><code class="sig-name descname">unified_scaled_probabilistic</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">experiments</span></em>, <em class="sig-param"><span class="n">tam</span></em>, <em class="sig-param"><span class="n">save</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">file</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">sort_columns</span><span class="o">=</span><span class="default_value">['CRPSAVG', 'CRPSSTD']</span></em>, <em class="sig-param"><span class="n">sort_ascend</span><span class="o">=</span><span class="default_value">[True, True]</span></em>, <em class="sig-param"><span class="n">save_best</span><span class="o">=</span><span class="default_value">False</span></em>, <em class="sig-param"><span class="n">ignore</span><span class="o">=</span><span class="default_value">None</span></em>, <em class="sig-param"><span class="n">replace</span><span class="o">=</span><span class="default_value">None</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/Util.html#unified_scaled_probabilistic"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.Util.unified_scaled_probabilistic" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</div>
<div class="section" id="module-pyFTS.benchmarks.arima">
<span id="pyfts-benchmarks-arima-module"></span><h2>pyFTS.benchmarks.arima module<a class="headerlink" href="#module-pyFTS.benchmarks.arima" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt id="pyFTS.benchmarks.arima.ARIMA">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.benchmarks.arima.</code><code class="sig-name descname">ARIMA</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/arima.html#ARIMA"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.arima.ARIMA" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.common.html#pyFTS.common.fts.FTS" title="pyFTS.common.fts.FTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.fts.FTS</span></code></a></p>
<p>Façade for statsmodels.tsa.arima_model</p>
<dl class="py method">
<dt id="pyFTS.benchmarks.arima.ARIMA.ar">
<code class="sig-name descname">ar</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/arima.html#ARIMA.ar"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.arima.ARIMA.ar" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.arima.ARIMA.forecast">
<code class="sig-name descname">forecast</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/arima.html#ARIMA.forecast"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.arima.ARIMA.forecast" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted values</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.arima.ARIMA.forecast_ahead_distribution">
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/arima.html#ARIMA.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.arima.ARIMA.forecast_ahead_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast n steps ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong> the number of steps ahead to forecast</p></li>
<li><p><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted Probability Distributions</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.arima.ARIMA.forecast_ahead_interval">
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/arima.html#ARIMA.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.arima.ARIMA.forecast_ahead_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast n steps ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong> the number of steps ahead to forecast</p></li>
<li><p><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted intervals</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.arima.ARIMA.forecast_distribution">
<code class="sig-name descname">forecast_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/arima.html#ARIMA.forecast_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.arima.ARIMA.forecast_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.arima.ARIMA.forecast_interval">
<code class="sig-name descname">forecast_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/arima.html#ARIMA.forecast_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.arima.ARIMA.forecast_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the prediction intervals</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.arima.ARIMA.ma">
<code class="sig-name descname">ma</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/arima.html#ARIMA.ma"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.arima.ARIMA.ma" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.arima.ARIMA.train">
<code class="sig-name descname">train</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/arima.html#ARIMA.train"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.arima.ARIMA.train" title="Permalink to this definition"></a></dt>
<dd><p>Method specific parameter fitting</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> training time series data</p></li>
<li><p><strong>kwargs</strong> Method specific parameters</p></li>
</ul>
</dd>
</dl>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.benchmarks.knn">
<span id="pyfts-benchmarks-knn-module"></span><h2>pyFTS.benchmarks.knn module<a class="headerlink" href="#module-pyFTS.benchmarks.knn" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt id="pyFTS.benchmarks.knn.KNearestNeighbors">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.benchmarks.knn.</code><code class="sig-name descname">KNearestNeighbors</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/knn.html#KNearestNeighbors"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.common.html#pyFTS.common.fts.FTS" title="pyFTS.common.fts.FTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.fts.FTS</span></code></a></p>
<p>A façade for sklearn.neighbors</p>
<dl class="py method">
<dt id="pyFTS.benchmarks.knn.KNearestNeighbors.forecast">
<code class="sig-name descname">forecast</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/knn.html#KNearestNeighbors.forecast"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors.forecast" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted values</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_distribution">
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/knn.html#KNearestNeighbors.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast n steps ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong> the number of steps ahead to forecast</p></li>
<li><p><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted Probability Distributions</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_interval">
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/knn.html#KNearestNeighbors.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors.forecast_ahead_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast n steps ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong> the number of steps ahead to forecast</p></li>
<li><p><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted intervals</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.knn.KNearestNeighbors.forecast_distribution">
<code class="sig-name descname">forecast_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/knn.html#KNearestNeighbors.forecast_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors.forecast_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.knn.KNearestNeighbors.forecast_interval">
<code class="sig-name descname">forecast_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/knn.html#KNearestNeighbors.forecast_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors.forecast_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the prediction intervals</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.knn.KNearestNeighbors.knn">
<code class="sig-name descname">knn</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">sample</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/knn.html#KNearestNeighbors.knn"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors.knn" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.knn.KNearestNeighbors.train">
<code class="sig-name descname">train</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/knn.html#KNearestNeighbors.train"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.knn.KNearestNeighbors.train" title="Permalink to this definition"></a></dt>
<dd><p>Method specific parameter fitting</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> training time series data</p></li>
<li><p><strong>kwargs</strong> Method specific parameters</p></li>
</ul>
</dd>
</dl>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.benchmarks.naive">
<span id="pyfts-benchmarks-naive-module"></span><h2>pyFTS.benchmarks.naive module<a class="headerlink" href="#module-pyFTS.benchmarks.naive" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt id="pyFTS.benchmarks.naive.Naive">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.benchmarks.naive.</code><code class="sig-name descname">Naive</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/naive.html#Naive"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.naive.Naive" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.common.html#pyFTS.common.fts.FTS" title="pyFTS.common.fts.FTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.fts.FTS</span></code></a></p>
<p>Naïve Forecasting method</p>
<dl class="py method">
<dt id="pyFTS.benchmarks.naive.Naive.forecast">
<code class="sig-name descname">forecast</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/naive.html#Naive.forecast"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.naive.Naive.forecast" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted values</p>
</dd>
</dl>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.benchmarks.quantreg">
<span id="pyfts-benchmarks-quantreg-module"></span><h2>pyFTS.benchmarks.quantreg module<a class="headerlink" href="#module-pyFTS.benchmarks.quantreg" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt id="pyFTS.benchmarks.quantreg.QuantileRegression">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.benchmarks.quantreg.</code><code class="sig-name descname">QuantileRegression</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/quantreg.html#QuantileRegression"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.quantreg.QuantileRegression" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.common.html#pyFTS.common.fts.FTS" title="pyFTS.common.fts.FTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.fts.FTS</span></code></a></p>
<p>Façade for statsmodels.regression.quantile_regression</p>
<dl class="py method">
<dt id="pyFTS.benchmarks.quantreg.QuantileRegression.forecast">
<code class="sig-name descname">forecast</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/quantreg.html#QuantileRegression.forecast"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.quantreg.QuantileRegression.forecast" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted values</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_distribution">
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/quantreg.html#QuantileRegression.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast n steps ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong> the number of steps ahead to forecast</p></li>
<li><p><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted Probability Distributions</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_interval">
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/quantreg.html#QuantileRegression.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.quantreg.QuantileRegression.forecast_ahead_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast n steps ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong> the number of steps ahead to forecast</p></li>
<li><p><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted intervals</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.quantreg.QuantileRegression.forecast_distribution">
<code class="sig-name descname">forecast_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/quantreg.html#QuantileRegression.forecast_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.quantreg.QuantileRegression.forecast_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.quantreg.QuantileRegression.forecast_interval">
<code class="sig-name descname">forecast_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/quantreg.html#QuantileRegression.forecast_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.quantreg.QuantileRegression.forecast_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the prediction intervals</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.quantreg.QuantileRegression.interval_to_interval">
<code class="sig-name descname">interval_to_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">lo_params</span></em>, <em class="sig-param"><span class="n">up_params</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/quantreg.html#QuantileRegression.interval_to_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.quantreg.QuantileRegression.interval_to_interval" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.quantreg.QuantileRegression.linearmodel">
<code class="sig-name descname">linearmodel</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">params</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/quantreg.html#QuantileRegression.linearmodel"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.quantreg.QuantileRegression.linearmodel" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.quantreg.QuantileRegression.point_to_interval">
<code class="sig-name descname">point_to_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">lo_params</span></em>, <em class="sig-param"><span class="n">up_params</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/quantreg.html#QuantileRegression.point_to_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.quantreg.QuantileRegression.point_to_interval" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.quantreg.QuantileRegression.train">
<code class="sig-name descname">train</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/quantreg.html#QuantileRegression.train"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.quantreg.QuantileRegression.train" title="Permalink to this definition"></a></dt>
<dd><p>Method specific parameter fitting</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> training time series data</p></li>
<li><p><strong>kwargs</strong> Method specific parameters</p></li>
</ul>
</dd>
</dl>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="pyfts-benchmarks-gaussianproc-module">
<h2>pyFTS.benchmarks.gaussianproc module<a class="headerlink" href="#pyfts-benchmarks-gaussianproc-module" title="Permalink to this headline"></a></h2>
</div>
<div class="section" id="module-pyFTS.benchmarks.BSTS">
<span id="pyfts-benchmarks-bsts-module"></span><h2>pyFTS.benchmarks.BSTS module<a class="headerlink" href="#module-pyFTS.benchmarks.BSTS" title="Permalink to this headline"></a></h2>
<dl class="py class">
<dt id="pyFTS.benchmarks.BSTS.ARIMA">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.benchmarks.BSTS.</code><code class="sig-name descname">ARIMA</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.common.html#pyFTS.common.fts.FTS" title="pyFTS.common.fts.FTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.fts.FTS</span></code></a></p>
<p>Façade for statsmodels.tsa.arima_model</p>
<dl class="py method">
<dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast">
<code class="sig-name descname">forecast</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.forecast"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted values</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead">
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast n steps ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong> the number of steps ahead to forecast (default: 1)</p></li>
<li><p><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted values</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_distribution">
<code class="sig-name descname">forecast_ahead_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.forecast_ahead_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast n steps ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong> the number of steps ahead to forecast</p></li>
<li><p><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted Probability Distributions</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_interval">
<code class="sig-name descname">forecast_ahead_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">ndata</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.forecast_ahead_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_ahead_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast n steps ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong> the number of steps ahead to forecast</p></li>
<li><p><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted intervals</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_distribution">
<code class="sig-name descname">forecast_distribution</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.forecast_distribution"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_distribution" title="Permalink to this definition"></a></dt>
<dd><p>Probabilistic forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.BSTS.ARIMA.forecast_interval">
<code class="sig-name descname">forecast_interval</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.forecast_interval"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.forecast_interval" title="Permalink to this definition"></a></dt>
<dd><p>Interval forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the prediction intervals</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.BSTS.ARIMA.inference">
<code class="sig-name descname">inference</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">steps</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.inference"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.inference" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py method">
<dt id="pyFTS.benchmarks.BSTS.ARIMA.train">
<code class="sig-name descname">train</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/benchmarks/BSTS.html#ARIMA.train"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.benchmarks.BSTS.ARIMA.train" title="Permalink to this definition"></a></dt>
<dd><p>Method specific parameter fitting</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> training time series data</p></li>
<li><p><strong>kwargs</strong> Method specific parameters</p></li>
</ul>
</dd>
</dl>
</dd></dl>
</dd></dl>
</div>
</div>
<div class="clearer"></div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<h3><a href="index.html">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">pyFTS.benchmarks package</a><ul>
<li><a class="reference internal" href="#module-pyFTS.benchmarks">Module contents</a></li>
<li><a class="reference internal" href="#submodules">Submodules</a></li>
<li><a class="reference internal" href="#module-pyFTS.benchmarks.benchmarks">pyFTS.benchmarks.benchmarks module</a></li>
<li><a class="reference internal" href="#module-pyFTS.benchmarks.Measures">pyFTS.benchmarks.Measures module</a></li>
<li><a class="reference internal" href="#module-pyFTS.benchmarks.ResidualAnalysis">pyFTS.benchmarks.ResidualAnalysis module</a></li>
<li><a class="reference internal" href="#module-pyFTS.benchmarks.Tests">pyFTS.benchmarks.Tests module</a></li>
<li><a class="reference internal" href="#module-pyFTS.benchmarks.Util">pyFTS.benchmarks.Util module</a></li>
<li><a class="reference internal" href="#module-pyFTS.benchmarks.arima">pyFTS.benchmarks.arima module</a></li>
<li><a class="reference internal" href="#module-pyFTS.benchmarks.knn">pyFTS.benchmarks.knn module</a></li>
<li><a class="reference internal" href="#module-pyFTS.benchmarks.naive">pyFTS.benchmarks.naive module</a></li>
<li><a class="reference internal" href="#module-pyFTS.benchmarks.quantreg">pyFTS.benchmarks.quantreg module</a></li>
<li><a class="reference internal" href="#pyfts-benchmarks-gaussianproc-module">pyFTS.benchmarks.gaussianproc module</a></li>
<li><a class="reference internal" href="#module-pyFTS.benchmarks.BSTS">pyFTS.benchmarks.BSTS module</a></li>
</ul>
</li>
</ul>
<h4>Previous topic</h4>
<p class="topless"><a href="pyFTS.html"
title="previous chapter">pyFTS package</a></p>
<h4>Next topic</h4>
<p class="topless"><a href="pyFTS.common.html"
title="next chapter">pyFTS.common package</a></p>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/pyFTS.benchmarks.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" />
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="pyFTS.common.html" title="pyFTS.common package"
>next</a> |</li>
<li class="right" >
<a href="pyFTS.html" title="pyFTS package"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.6 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="pyFTS.html" >pyFTS package</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">pyFTS.benchmarks package</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2018, Machine Intelligence and Data Science Laboratory - UFMG - Brazil.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 3.1.2.
</div>
</body>
</html>