pyFTS/docs/build/html/pyFTS.models.incremental.html
2021-01-12 18:04:42 -03:00

395 lines
24 KiB
HTML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0"><script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-55120145-3']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
<title>pyFTS.models.incremental package &#8212; pyFTS 1.6 documentation</title>
<link rel="stylesheet" href="_static/bizstyle.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<script id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/language_data.js"></script>
<script src="_static/bizstyle.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="pyFTS.models.multivariate package" href="pyFTS.models.multivariate.html" />
<link rel="prev" title="pyFTS.models.ensemble package" href="pyFTS.models.ensemble.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0">
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="pyFTS.models.multivariate.html" title="pyFTS.models.multivariate package"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="pyFTS.models.ensemble.html" title="pyFTS.models.ensemble package"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.6 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="pyFTS.html" >pyFTS package</a> &#187;</li>
<li class="nav-item nav-item-3"><a href="pyFTS.models.html" accesskey="U">pyFTS.models package</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">pyFTS.models.incremental package</a></li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="pyfts-models-incremental-package">
<h1>pyFTS.models.incremental package<a class="headerlink" href="#pyfts-models-incremental-package" title="Permalink to this headline"></a></h1>
<div class="section" id="module-pyFTS.models.incremental">
<span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-pyFTS.models.incremental" title="Permalink to this headline"></a></h2>
<p>FTS methods with incremental/online learning</p>
</div>
<div class="section" id="submodules">
<h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this headline"></a></h2>
</div>
<div class="section" id="module-pyFTS.models.incremental.TimeVariant">
<span id="pyfts-models-incremental-timevariant-module"></span><h2>pyFTS.models.incremental.TimeVariant module<a class="headerlink" href="#module-pyFTS.models.incremental.TimeVariant" title="Permalink to this headline"></a></h2>
<p>Meta model that wraps another FTS method and continously retrain it using a data window with
the most recent data</p>
<dl class="py class">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.incremental.TimeVariant.</code><code class="sig-name descname">Retrainer</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/incremental/TimeVariant.html#Retrainer"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.common.html#pyFTS.common.fts.FTS" title="pyFTS.common.fts.FTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.common.fts.FTS</span></code></a></p>
<p>Meta model for incremental/online learning that retrain its internal model after
data windows controlled by the parameter batch_size, using as the training data a
window of recent lags, whose size is controlled by the parameter window_length.</p>
<dl class="py attribute">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.auto_update">
<code class="sig-name descname">auto_update</code><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.auto_update" title="Permalink to this definition"></a></dt>
<dd><p>If true the model is updated at each time and not recreated</p>
</dd></dl>
<dl class="py attribute">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.batch_size">
<code class="sig-name descname">batch_size</code><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.batch_size" title="Permalink to this definition"></a></dt>
<dd><p>The batch interval between each retraining</p>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.forecast">
<code class="sig-name descname">forecast</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/incremental/TimeVariant.html#Retrainer.forecast"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.forecast" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted values</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.forecast_ahead">
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/incremental/TimeVariant.html#Retrainer.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.forecast_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong> the number of steps ahead to forecast (default: 1)</p></li>
<li><p><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted values</p>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.fts_method">
<code class="sig-name descname">fts_method</code><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.fts_method" title="Permalink to this definition"></a></dt>
<dd><p>The FTS method to be called when a new model is build</p>
</dd></dl>
<dl class="py attribute">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.fts_params">
<code class="sig-name descname">fts_params</code><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.fts_params" title="Permalink to this definition"></a></dt>
<dd><p>The FTS method specific parameters</p>
</dd></dl>
<dl class="py attribute">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.model">
<code class="sig-name descname">model</code><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.model" title="Permalink to this definition"></a></dt>
<dd><p>The most recent trained model</p>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.offset">
<code class="sig-name descname">offset</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/incremental/TimeVariant.html#Retrainer.offset"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.offset" title="Permalink to this definition"></a></dt>
<dd><p>Returns the number of lags to skip in the input test data in order to synchronize it with
the forecasted values given by the predict function. This is necessary due to the order of the
model, among other parameters.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p>An integer with the number of lags to skip</p>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.partitioner">
<code class="sig-name descname">partitioner</code><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.partitioner" title="Permalink to this definition"></a></dt>
<dd><p>The most recent trained partitioner</p>
</dd></dl>
<dl class="py attribute">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.partitioner_method">
<code class="sig-name descname">partitioner_method</code><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.partitioner_method" title="Permalink to this definition"></a></dt>
<dd><p>The partitioner method to be called when a new model is build</p>
</dd></dl>
<dl class="py attribute">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.partitioner_params">
<code class="sig-name descname">partitioner_params</code><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.partitioner_params" title="Permalink to this definition"></a></dt>
<dd><p>The partitioner method parameters</p>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.train">
<code class="sig-name descname">train</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/incremental/TimeVariant.html#Retrainer.train"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.train" title="Permalink to this definition"></a></dt>
<dd><p>Method specific parameter fitting</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> training time series data</p></li>
<li><p><strong>kwargs</strong> Method specific parameters</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt id="pyFTS.models.incremental.TimeVariant.Retrainer.window_length">
<code class="sig-name descname">window_length</code><a class="headerlink" href="#pyFTS.models.incremental.TimeVariant.Retrainer.window_length" title="Permalink to this definition"></a></dt>
<dd><p>The memory window length</p>
</dd></dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.models.incremental.IncrementalEnsemble">
<span id="pyfts-models-incremental-incrementalensemble-module"></span><h2>pyFTS.models.incremental.IncrementalEnsemble module<a class="headerlink" href="#module-pyFTS.models.incremental.IncrementalEnsemble" title="Permalink to this headline"></a></h2>
<p>Time Variant/Incremental Ensemble of FTS methods</p>
<dl class="py class">
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS">
<em class="property">class </em><code class="sig-prename descclassname">pyFTS.models.incremental.IncrementalEnsemble.</code><code class="sig-name descname">IncrementalEnsembleFTS</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/incremental/IncrementalEnsemble.html#IncrementalEnsembleFTS"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS" title="Permalink to this definition"></a></dt>
<dd><p>Bases: <a class="reference internal" href="pyFTS.models.ensemble.html#pyFTS.models.ensemble.ensemble.EnsembleFTS" title="pyFTS.models.ensemble.ensemble.EnsembleFTS"><code class="xref py py-class docutils literal notranslate"><span class="pre">pyFTS.models.ensemble.ensemble.EnsembleFTS</span></code></a></p>
<p>Time Variant/Incremental Ensemble of FTS methods</p>
<dl class="py attribute">
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.batch_size">
<code class="sig-name descname">batch_size</code><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.batch_size" title="Permalink to this definition"></a></dt>
<dd><p>The batch interval between each retraining</p>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.forecast">
<code class="sig-name descname">forecast</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/incremental/IncrementalEnsemble.html#IncrementalEnsembleFTS.forecast"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.forecast" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast one step ahead</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>kwargs</strong> model specific parameters</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted values</p>
</dd>
</dl>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.forecast_ahead">
<code class="sig-name descname">forecast_ahead</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">steps</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/incremental/IncrementalEnsemble.html#IncrementalEnsembleFTS.forecast_ahead"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.forecast_ahead" title="Permalink to this definition"></a></dt>
<dd><p>Point forecast from 1 to H steps ahead, where H is given by the steps parameter</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> time series data with the minimal length equal to the max_lag of the model</p></li>
<li><p><strong>steps</strong> the number of steps ahead to forecast (default: 1)</p></li>
<li><p><strong>start_at</strong> in the multi step forecasting, the index of the data where to start forecasting (default: 0)</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with the forecasted values</p>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.fts_method">
<code class="sig-name descname">fts_method</code><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.fts_method" title="Permalink to this definition"></a></dt>
<dd><p>The FTS method to be called when a new model is build</p>
</dd></dl>
<dl class="py attribute">
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.fts_params">
<code class="sig-name descname">fts_params</code><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.fts_params" title="Permalink to this definition"></a></dt>
<dd><p>The FTS method specific parameters</p>
</dd></dl>
<dl class="py attribute">
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.num_models">
<code class="sig-name descname">num_models</code><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.num_models" title="Permalink to this definition"></a></dt>
<dd><p>The number of models to hold in the ensemble</p>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.offset">
<code class="sig-name descname">offset</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/incremental/IncrementalEnsemble.html#IncrementalEnsembleFTS.offset"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.offset" title="Permalink to this definition"></a></dt>
<dd><p>Returns the number of lags to skip in the input test data in order to synchronize it with
the forecasted values given by the predict function. This is necessary due to the order of the
model, among other parameters.</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p>An integer with the number of lags to skip</p>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.partitioner_method">
<code class="sig-name descname">partitioner_method</code><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.partitioner_method" title="Permalink to this definition"></a></dt>
<dd><p>The partitioner method to be called when a new model is build</p>
</dd></dl>
<dl class="py attribute">
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.partitioner_params">
<code class="sig-name descname">partitioner_params</code><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.partitioner_params" title="Permalink to this definition"></a></dt>
<dd><p>The partitioner method parameters</p>
</dd></dl>
<dl class="py method">
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.train">
<code class="sig-name descname">train</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/models/incremental/IncrementalEnsemble.html#IncrementalEnsembleFTS.train"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.train" title="Permalink to this definition"></a></dt>
<dd><p>Method specific parameter fitting</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>data</strong> training time series data</p></li>
<li><p><strong>kwargs</strong> Method specific parameters</p></li>
</ul>
</dd>
</dl>
</dd></dl>
<dl class="py attribute">
<dt id="pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.window_length">
<code class="sig-name descname">window_length</code><a class="headerlink" href="#pyFTS.models.incremental.IncrementalEnsemble.IncrementalEnsembleFTS.window_length" title="Permalink to this definition"></a></dt>
<dd><p>The memory window length</p>
</dd></dl>
</dd></dl>
</div>
</div>
<div class="clearer"></div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<h3><a href="index.html">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">pyFTS.models.incremental package</a><ul>
<li><a class="reference internal" href="#module-pyFTS.models.incremental">Module contents</a></li>
<li><a class="reference internal" href="#submodules">Submodules</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.incremental.TimeVariant">pyFTS.models.incremental.TimeVariant module</a></li>
<li><a class="reference internal" href="#module-pyFTS.models.incremental.IncrementalEnsemble">pyFTS.models.incremental.IncrementalEnsemble module</a></li>
</ul>
</li>
</ul>
<h4>Previous topic</h4>
<p class="topless"><a href="pyFTS.models.ensemble.html"
title="previous chapter">pyFTS.models.ensemble package</a></p>
<h4>Next topic</h4>
<p class="topless"><a href="pyFTS.models.multivariate.html"
title="next chapter">pyFTS.models.multivariate package</a></p>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/pyFTS.models.incremental.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" />
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="pyFTS.models.multivariate.html" title="pyFTS.models.multivariate package"
>next</a> |</li>
<li class="right" >
<a href="pyFTS.models.ensemble.html" title="pyFTS.models.ensemble package"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.6 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="pyFTS.html" >pyFTS package</a> &#187;</li>
<li class="nav-item nav-item-3"><a href="pyFTS.models.html" >pyFTS.models package</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">pyFTS.models.incremental package</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2018, Machine Intelligence and Data Science Laboratory - UFMG - Brazil.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 3.1.2.
</div>
</body>
</html>