pyFTS/docs/build/html/pyFTS.hyperparam.html
2021-01-12 18:04:42 -03:00

546 lines
38 KiB
HTML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0"><script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-55120145-3']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
<title>pyFTS.hyperparam package &#8212; pyFTS 1.6 documentation</title>
<link rel="stylesheet" href="_static/bizstyle.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<script id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/language_data.js"></script>
<script src="_static/bizstyle.js"></script>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="pyFTS.models package" href="pyFTS.models.html" />
<link rel="prev" title="pyFTS.distributed package" href="pyFTS.distributed.html" />
<meta name="viewport" content="width=device-width,initial-scale=1.0">
<!--[if lt IE 9]>
<script src="_static/css3-mediaqueries.js"></script>
<![endif]-->
</head><body>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="pyFTS.models.html" title="pyFTS.models package"
accesskey="N">next</a> |</li>
<li class="right" >
<a href="pyFTS.distributed.html" title="pyFTS.distributed package"
accesskey="P">previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.6 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="pyFTS.html" accesskey="U">pyFTS package</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">pyFTS.hyperparam package</a></li>
</ul>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<div class="section" id="pyfts-hyperparam-package">
<h1>pyFTS.hyperparam package<a class="headerlink" href="#pyfts-hyperparam-package" title="Permalink to this headline"></a></h1>
<div class="section" id="module-pyFTS.hyperparam">
<span id="module-contents"></span><h2>Module contents<a class="headerlink" href="#module-pyFTS.hyperparam" title="Permalink to this headline"></a></h2>
</div>
<div class="section" id="submodules">
<h2>Submodules<a class="headerlink" href="#submodules" title="Permalink to this headline"></a></h2>
</div>
<div class="section" id="module-pyFTS.hyperparam.Util">
<span id="pyfts-hyperparam-util-module"></span><h2>pyFTS.hyperparam.Util module<a class="headerlink" href="#module-pyFTS.hyperparam.Util" title="Permalink to this headline"></a></h2>
<p>Common facilities for hyperparameter optimization</p>
<dl class="py function">
<dt id="pyFTS.hyperparam.Util.create_hyperparam_tables">
<code class="sig-prename descclassname">pyFTS.hyperparam.Util.</code><code class="sig-name descname">create_hyperparam_tables</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">conn</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Util.html#create_hyperparam_tables"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Util.create_hyperparam_tables" title="Permalink to this definition"></a></dt>
<dd><p>Create a sqlite3 table designed to store benchmark results.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>conn</strong> a sqlite3 database connection</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.Util.insert_hyperparam">
<code class="sig-prename descclassname">pyFTS.hyperparam.Util.</code><code class="sig-name descname">insert_hyperparam</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">data</span></em>, <em class="sig-param"><span class="n">conn</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Util.html#insert_hyperparam"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Util.insert_hyperparam" title="Permalink to this definition"></a></dt>
<dd><p>Insert benchmark data on database</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>data</strong> a tuple with the benchmark data with format:</p>
</dd>
</dl>
<p>Dataset: Identify on which dataset the dataset was performed
Tag: a user defined word that indentify a benchmark set
Model: FTS model
Transformation: The name of data transformation, if one was used
mf: membership function
Order: the order of the FTS method
Partitioner: UoD partitioning scheme
Partitions: Number of partitions
alpha: alpha cut
lags: lags
Measure: accuracy measure
Value: the measure value</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>conn</strong> a sqlite3 database connection</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.Util.open_hyperparam_db">
<code class="sig-prename descclassname">pyFTS.hyperparam.Util.</code><code class="sig-name descname">open_hyperparam_db</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">name</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Util.html#open_hyperparam_db"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Util.open_hyperparam_db" title="Permalink to this definition"></a></dt>
<dd><p>Open a connection with a Sqlite database designed to store benchmark results.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>name</strong> database filenem</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a sqlite3 database connection</p>
</dd>
</dl>
</dd></dl>
</div>
<div class="section" id="module-pyFTS.hyperparam.GridSearch">
<span id="pyfts-hyperparam-gridsearch-module"></span><h2>pyFTS.hyperparam.GridSearch module<a class="headerlink" href="#module-pyFTS.hyperparam.GridSearch" title="Permalink to this headline"></a></h2>
<dl class="py function">
<dt id="pyFTS.hyperparam.GridSearch.cluster_method">
<code class="sig-prename descclassname">pyFTS.hyperparam.GridSearch.</code><code class="sig-name descname">cluster_method</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">individual</span></em>, <em class="sig-param"><span class="n">dataset</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/GridSearch.html#cluster_method"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.GridSearch.cluster_method" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.GridSearch.dict_individual">
<code class="sig-prename descclassname">pyFTS.hyperparam.GridSearch.</code><code class="sig-name descname">dict_individual</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">mf</span></em>, <em class="sig-param"><span class="n">partitioner</span></em>, <em class="sig-param"><span class="n">partitions</span></em>, <em class="sig-param"><span class="n">order</span></em>, <em class="sig-param"><span class="n">lags</span></em>, <em class="sig-param"><span class="n">alpha_cut</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/GridSearch.html#dict_individual"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.GridSearch.dict_individual" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.GridSearch.execute">
<code class="sig-prename descclassname">pyFTS.hyperparam.GridSearch.</code><code class="sig-name descname">execute</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">hyperparams</span></em>, <em class="sig-param"><span class="n">datasetname</span></em>, <em class="sig-param"><span class="n">dataset</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/GridSearch.html#execute"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.GridSearch.execute" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.GridSearch.process_jobs">
<code class="sig-prename descclassname">pyFTS.hyperparam.GridSearch.</code><code class="sig-name descname">process_jobs</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">jobs</span></em>, <em class="sig-param"><span class="n">datasetname</span></em>, <em class="sig-param"><span class="n">conn</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/GridSearch.html#process_jobs"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.GridSearch.process_jobs" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
</div>
<div class="section" id="module-pyFTS.hyperparam.Evolutionary">
<span id="pyfts-hyperparam-evolutionary-module"></span><h2>pyFTS.hyperparam.Evolutionary module<a class="headerlink" href="#module-pyFTS.hyperparam.Evolutionary" title="Permalink to this headline"></a></h2>
<p>Distributed Evolutionary Hyperparameter Optimization (DEHO) for MVFTS</p>
<dl class="py function">
<dt id="pyFTS.hyperparam.Evolutionary.GeneticAlgorithm">
<code class="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><code class="sig-name descname">GeneticAlgorithm</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">dataset</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Evolutionary.html#GeneticAlgorithm"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Evolutionary.GeneticAlgorithm" title="Permalink to this definition"></a></dt>
<dd><p>Genetic algoritm for Distributed Evolutionary Hyperparameter Optimization (DEHO)</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>dataset</strong> The time series to optimize the FTS</p></li>
<li><p><strong>ngen</strong> An integer value with the maximum number of generations, default value: 30</p></li>
<li><p><strong>mgen</strong> An integer value with the maximum number of generations without improvement to stop, default value 7</p></li>
<li><p><strong>npop</strong> An integer value with the population size, default value: 20</p></li>
<li><p><strong>pcross</strong> A float value between 0 and 1 with the probability of crossover, default: .5</p></li>
<li><p><strong>psel</strong> A float value between 0 and 1 with the probability of selection, default: .5</p></li>
<li><p><strong>pmut</strong> A float value between 0 and 1 with the probability of mutation, default: .3</p></li>
<li><p><strong>fts_method</strong> The FTS method to optimize</p></li>
<li><p><strong>parameters</strong> dict with model specific arguments for fts_method</p></li>
<li><p><strong>elitism</strong> A boolean value indicating if the best individual must always survive to next population</p></li>
<li><p><strong>initial_operator</strong> a function that receives npop and return a random population with size npop</p></li>
<li><p><strong>evalutation_operator</strong> a function that receives a dataset and an individual and return its fitness</p></li>
<li><p><strong>selection_operator</strong> a function that receives the whole population and return a selected individual</p></li>
<li><p><strong>crossover_operator</strong> a function that receives the whole population and return a descendent individual</p></li>
<li><p><strong>mutation_operator</strong> a function that receives one individual and return a changed individual</p></li>
<li><p><strong>window_size</strong> An integer value with the the length of scrolling window for train/test on dataset</p></li>
<li><p><strong>train_rate</strong> A float value between 0 and 1 with the train/test split ([0,1])</p></li>
<li><p><strong>increment_rate</strong> A float value between 0 and 1 with the the increment of the scrolling window,
relative to the window_size ([0,1])</p></li>
<li><p><strong>collect_statistics</strong> A boolean value indicating to collect statistics for each generation</p></li>
<li><p><strong>distributed</strong> A value indicating it the execution will be local and sequential (distributed=False),
or parallel and distributed (distributed=dispy or distributed=spark)</p></li>
<li><p><strong>cluster</strong> If distributed=dispy the list of cluster nodes, else if distributed=spark it is the master node</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>the best genotype</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.Evolutionary.crossover">
<code class="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><code class="sig-name descname">crossover</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">population</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Evolutionary.html#crossover"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Evolutionary.crossover" title="Permalink to this definition"></a></dt>
<dd><p>Crossover operation between two parents</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>population</strong> the original population</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a genotype</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.Evolutionary.double_tournament">
<code class="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><code class="sig-name descname">double_tournament</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">population</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Evolutionary.html#double_tournament"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Evolutionary.double_tournament" title="Permalink to this definition"></a></dt>
<dd><p>Double tournament selection strategy.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>population</strong> </p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.Evolutionary.elitism">
<code class="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><code class="sig-name descname">elitism</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">population</span></em>, <em class="sig-param"><span class="n">new_population</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Evolutionary.html#elitism"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Evolutionary.elitism" title="Permalink to this definition"></a></dt>
<dd><p>Elitism operation, always select the best individual of the population and discard the worst</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>population</strong> </p></li>
<li><p><strong>new_population</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.Evolutionary.evaluate">
<code class="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><code class="sig-name descname">evaluate</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">dataset</span></em>, <em class="sig-param"><span class="n">individual</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Evolutionary.html#evaluate"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Evolutionary.evaluate" title="Permalink to this definition"></a></dt>
<dd><p>Evaluate an individual using a sliding window cross validation over the dataset.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>dataset</strong> Evaluation dataset</p></li>
<li><p><strong>individual</strong> genotype to be tested</p></li>
<li><p><strong>window_size</strong> The length of scrolling window for train/test on dataset</p></li>
<li><p><strong>train_rate</strong> The train/test split ([0,1])</p></li>
<li><p><strong>increment_rate</strong> The increment of the scrolling window, relative to the window_size ([0,1])</p></li>
<li><p><strong>parameters</strong> dict with model specific arguments for fit method.</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a tuple (len_lags, rmse) with the parsimony fitness value and the accuracy fitness value</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.Evolutionary.execute">
<code class="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><code class="sig-name descname">execute</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">datasetname</span></em>, <em class="sig-param"><span class="n">dataset</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Evolutionary.html#execute"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Evolutionary.execute" title="Permalink to this definition"></a></dt>
<dd><p>Batch execution of Distributed Evolutionary Hyperparameter Optimization (DEHO) for monovariate methods</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>datasetname</strong> </p></li>
<li><p><strong>dataset</strong> The time series to optimize the FTS</p></li>
<li><p><strong>file</strong> </p></li>
<li><p><strong>experiments</strong> </p></li>
<li><p><strong>distributed</strong> </p></li>
<li><p><strong>ngen</strong> An integer value with the maximum number of generations, default value: 30</p></li>
<li><p><strong>mgen</strong> An integer value with the maximum number of generations without improvement to stop, default value 7</p></li>
<li><p><strong>npop</strong> An integer value with the population size, default value: 20</p></li>
<li><p><strong>pcross</strong> A float value between 0 and 1 with the probability of crossover, default: .5</p></li>
<li><p><strong>psel</strong> A float value between 0 and 1 with the probability of selection, default: .5</p></li>
<li><p><strong>pmut</strong> A float value between 0 and 1 with the probability of mutation, default: .3</p></li>
<li><p><strong>fts_method</strong> The FTS method to optimize</p></li>
<li><p><strong>parameters</strong> dict with model specific arguments for fts_method</p></li>
<li><p><strong>elitism</strong> A boolean value indicating if the best individual must always survive to next population</p></li>
<li><p><strong>initial_operator</strong> a function that receives npop and return a random population with size npop</p></li>
<li><p><strong>random_individual</strong> create an random genotype</p></li>
<li><p><strong>evalutation_operator</strong> a function that receives a dataset and an individual and return its fitness</p></li>
<li><p><strong>selection_operator</strong> a function that receives the whole population and return a selected individual</p></li>
<li><p><strong>crossover_operator</strong> a function that receives the whole population and return a descendent individual</p></li>
<li><p><strong>mutation_operator</strong> a function that receives one individual and return a changed individual</p></li>
<li><p><strong>window_size</strong> An integer value with the the length of scrolling window for train/test on dataset</p></li>
<li><p><strong>train_rate</strong> A float value between 0 and 1 with the train/test split ([0,1])</p></li>
<li><p><strong>increment_rate</strong> A float value between 0 and 1 with the the increment of the scrolling window,
relative to the window_size ([0,1])</p></li>
<li><p><strong>collect_statistics</strong> A boolean value indicating to collect statistics for each generation</p></li>
<li><p><strong>distributed</strong> A value indicating it the execution will be local and sequential (distributed=False),
or parallel and distributed (distributed=dispy or distributed=spark)</p></li>
<li><p><strong>cluster</strong> If distributed=dispy the list of cluster nodes, else if distributed=spark it is the master node</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>the best genotype</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.Evolutionary.genotype">
<code class="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><code class="sig-name descname">genotype</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">mf</span></em>, <em class="sig-param"><span class="n">npart</span></em>, <em class="sig-param"><span class="n">partitioner</span></em>, <em class="sig-param"><span class="n">order</span></em>, <em class="sig-param"><span class="n">alpha</span></em>, <em class="sig-param"><span class="n">lags</span></em>, <em class="sig-param"><span class="n">f1</span></em>, <em class="sig-param"><span class="n">f2</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Evolutionary.html#genotype"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Evolutionary.genotype" title="Permalink to this definition"></a></dt>
<dd><p>Create the individual genotype</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>mf</strong> membership function</p></li>
<li><p><strong>npart</strong> number of partitions</p></li>
<li><p><strong>partitioner</strong> partitioner method</p></li>
<li><p><strong>order</strong> model order</p></li>
<li><p><strong>alpha</strong> alpha-cut</p></li>
<li><p><strong>lags</strong> array with lag indexes</p></li>
<li><p><strong>f1</strong> accuracy fitness value</p></li>
<li><p><strong>f2</strong> parsimony fitness value</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>the genotype, a dictionary with all hyperparameters</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.Evolutionary.initial_population">
<code class="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><code class="sig-name descname">initial_population</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">n</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Evolutionary.html#initial_population"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Evolutionary.initial_population" title="Permalink to this definition"></a></dt>
<dd><p>Create a random population of size n</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><p><strong>n</strong> the size of the population</p>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a list with n random individuals</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.Evolutionary.lag_crossover2">
<code class="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><code class="sig-name descname">lag_crossover2</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">best</span></em>, <em class="sig-param"><span class="n">worst</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Evolutionary.html#lag_crossover2"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Evolutionary.lag_crossover2" title="Permalink to this definition"></a></dt>
<dd><p>Cross over two lag genes</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>best</strong> best genotype</p></li>
<li><p><strong>worst</strong> worst genotype</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a tuple (order, lags)</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.Evolutionary.log_result">
<code class="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><code class="sig-name descname">log_result</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">conn</span></em>, <em class="sig-param"><span class="n">datasetname</span></em>, <em class="sig-param"><span class="n">fts_method</span></em>, <em class="sig-param"><span class="n">result</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Evolutionary.html#log_result"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Evolutionary.log_result" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.Evolutionary.mutation">
<code class="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><code class="sig-name descname">mutation</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">individual</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Evolutionary.html#mutation"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Evolutionary.mutation" title="Permalink to this definition"></a></dt>
<dd><p>Mutation operator</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>individual</strong> an individual genotype</p></li>
<li><p><strong>pmut</strong> individual probability o</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.Evolutionary.mutation_lags">
<code class="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><code class="sig-name descname">mutation_lags</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">lags</span></em>, <em class="sig-param"><span class="n">order</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Evolutionary.html#mutation_lags"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Evolutionary.mutation_lags" title="Permalink to this definition"></a></dt>
<dd><p>Mutation operation for lags gene</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>lags</strong> </p></li>
<li><p><strong>order</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.Evolutionary.persist_statistics">
<code class="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><code class="sig-name descname">persist_statistics</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">datasetname</span></em>, <em class="sig-param"><span class="n">statistics</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Evolutionary.html#persist_statistics"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Evolutionary.persist_statistics" title="Permalink to this definition"></a></dt>
<dd></dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.Evolutionary.phenotype">
<code class="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><code class="sig-name descname">phenotype</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">individual</span></em>, <em class="sig-param"><span class="n">train</span></em>, <em class="sig-param"><span class="n">fts_method</span></em>, <em class="sig-param"><span class="n">parameters</span><span class="o">=</span><span class="default_value">{}</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Evolutionary.html#phenotype"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Evolutionary.phenotype" title="Permalink to this definition"></a></dt>
<dd><p>Instantiate the genotype, creating a fitted model with the genotype hyperparameters</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>individual</strong> a genotype</p></li>
<li><p><strong>train</strong> the training dataset</p></li>
<li><p><strong>fts_method</strong> the FTS method</p></li>
<li><p><strong>parameters</strong> dict with model specific arguments for fit method.</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p>a fitted FTS model</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.Evolutionary.process_experiment">
<code class="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><code class="sig-name descname">process_experiment</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">fts_method</span></em>, <em class="sig-param"><span class="n">result</span></em>, <em class="sig-param"><span class="n">datasetname</span></em>, <em class="sig-param"><span class="n">conn</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Evolutionary.html#process_experiment"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Evolutionary.process_experiment" title="Permalink to this definition"></a></dt>
<dd><p>Persist the results of an DEHO execution in sqlite database (best hyperparameters) and json file (generation statistics)</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>fts_method</strong> </p></li>
<li><p><strong>result</strong> </p></li>
<li><p><strong>datasetname</strong> </p></li>
<li><p><strong>conn</strong> </p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.Evolutionary.random_genotype">
<code class="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><code class="sig-name descname">random_genotype</code><span class="sig-paren">(</span><em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Evolutionary.html#random_genotype"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Evolutionary.random_genotype" title="Permalink to this definition"></a></dt>
<dd><p>Create random genotype</p>
<dl class="field-list simple">
<dt class="field-odd">Returns</dt>
<dd class="field-odd"><p>the genotype, a dictionary with all hyperparameters</p>
</dd>
</dl>
</dd></dl>
<dl class="py function">
<dt id="pyFTS.hyperparam.Evolutionary.tournament">
<code class="sig-prename descclassname">pyFTS.hyperparam.Evolutionary.</code><code class="sig-name descname">tournament</code><span class="sig-paren">(</span><em class="sig-param"><span class="n">population</span></em>, <em class="sig-param"><span class="n">objective</span></em>, <em class="sig-param"><span class="o">**</span><span class="n">kwargs</span></em><span class="sig-paren">)</span><a class="reference internal" href="_modules/pyFTS/hyperparam/Evolutionary.html#tournament"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#pyFTS.hyperparam.Evolutionary.tournament" title="Permalink to this definition"></a></dt>
<dd><p>Simple tournament selection strategy.</p>
<dl class="field-list simple">
<dt class="field-odd">Parameters</dt>
<dd class="field-odd"><ul class="simple">
<li><p><strong>population</strong> the population</p></li>
<li><p><strong>objective</strong> the objective to be considered on tournament</p></li>
</ul>
</dd>
<dt class="field-even">Returns</dt>
<dd class="field-even"><p></p>
</dd>
</dl>
</dd></dl>
</div>
</div>
<div class="clearer"></div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<h3><a href="index.html">Table of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">pyFTS.hyperparam package</a><ul>
<li><a class="reference internal" href="#module-pyFTS.hyperparam">Module contents</a></li>
<li><a class="reference internal" href="#submodules">Submodules</a></li>
<li><a class="reference internal" href="#module-pyFTS.hyperparam.Util">pyFTS.hyperparam.Util module</a></li>
<li><a class="reference internal" href="#module-pyFTS.hyperparam.GridSearch">pyFTS.hyperparam.GridSearch module</a></li>
<li><a class="reference internal" href="#module-pyFTS.hyperparam.Evolutionary">pyFTS.hyperparam.Evolutionary module</a></li>
</ul>
</li>
</ul>
<h4>Previous topic</h4>
<p class="topless"><a href="pyFTS.distributed.html"
title="previous chapter">pyFTS.distributed package</a></p>
<h4>Next topic</h4>
<p class="topless"><a href="pyFTS.models.html"
title="next chapter">pyFTS.models package</a></p>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/pyFTS.hyperparam.rst.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3 id="searchlabel">Quick search</h3>
<div class="searchformwrapper">
<form class="search" action="search.html" method="get">
<input type="text" name="q" aria-labelledby="searchlabel" />
<input type="submit" value="Go" />
</form>
</div>
</div>
<script>$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> |</li>
<li class="right" >
<a href="pyFTS.models.html" title="pyFTS.models package"
>next</a> |</li>
<li class="right" >
<a href="pyFTS.distributed.html" title="pyFTS.distributed package"
>previous</a> |</li>
<li class="nav-item nav-item-0"><a href="index.html">pyFTS 1.6 documentation</a> &#187;</li>
<li class="nav-item nav-item-1"><a href="modules.html" >pyFTS</a> &#187;</li>
<li class="nav-item nav-item-2"><a href="pyFTS.html" >pyFTS package</a> &#187;</li>
<li class="nav-item nav-item-this"><a href="">pyFTS.hyperparam package</a></li>
</ul>
</div>
<div class="footer" role="contentinfo">
&#169; Copyright 2018, Machine Intelligence and Data Science Laboratory - UFMG - Brazil.
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 3.1.2.
</div>
</body>
</html>