Source code for pyFTS.models.multivariate.wmvfts
from pyFTS.common import fts, FuzzySet, FLR, Membership, tree
from pyFTS.partitioners import Grid
from pyFTS.models.multivariate import mvfts, FLR as MVFLR, common, flrg as mvflrg
import numpy as np
import pandas as pd
[docs]class WeightedFLRG(mvflrg.FLRG):
"""
Weighted Multivariate Fuzzy Logical Rule Group
"""
def __init__(self, **kwargs):
super(WeightedFLRG, self).__init__(**kwargs)
self.order = kwargs.get('order', 1)
self.LHS = kwargs.get('lhs', {})
self.RHS = {}
self.count = 0.0
self.w = None
[docs] def append_rhs(self, fset, **kwargs):
count = kwargs.get('count', 1.0)
if fset not in self.RHS:
self.RHS[fset] = count
else:
self.RHS[fset] += count
self.count += count
[docs] def weights(self):
if self.w is None:
self.w = np.array([self.RHS[c] / self.count for c in self.RHS.keys()])
return self.w
[docs] def get_midpoint(self, sets):
if self.midpoint is None:
mp = np.array([sets[c].centroid for c in self.RHS.keys()])
self.midpoint = mp.dot(self.weights())
return self.midpoint
[docs] def get_lower(self, sets):
if self.lower is None:
lw = np.array([sets[s].lower for s in self.RHS.keys()])
self.lower = lw.dot(self.weights())
return self.lower
[docs] def get_upper(self, sets):
if self.upper is None:
up = np.array([sets[s].upper for s in self.RHS.keys()])
self.upper = up.dot(self.weights())
return self.upper
def __str__(self):
_str = ""
for k in self.RHS.keys():
_str += ", " if len(_str) > 0 else ""
_str += k + " (" + str(round( self.RHS[k] / self.count, 3)) + ")"
return self.get_key() + " -> " + _str
[docs]class WeightedMVFTS(mvfts.MVFTS):
"""
Weighted Multivariate FTS
"""
def __init__(self, **kwargs):
super(WeightedMVFTS, self).__init__(order=1, **kwargs)
self.shortname = "WeightedMVFTS"
self.name = "Weighted Multivariate FTS"
[docs] def generate_flrg(self, flrs):
for flr in flrs:
flrg = WeightedFLRG(lhs=flr.LHS)
if flrg.get_key() not in self.flrgs:
self.flrgs[flrg.get_key()] = flrg
self.flrgs[flrg.get_key()].append_rhs(flr.RHS)