pyFTS.models.multivariate package¶
Module contents¶
Multivariate Fuzzy Time Series methods
Submodules¶
pyFTS.models.multivariate.FLR module¶
pyFTS.models.multivariate.common module¶
pyFTS.models.multivariate.flrg module¶
-
class
pyFTS.models.multivariate.flrg.
FLRG
(**kwargs)[source]¶ Bases:
pyFTS.common.flrg.FLRG
Multivariate Fuzzy Logical Rule Group
pyFTS.models.multivariate.mvfts module¶
-
class
pyFTS.models.multivariate.mvfts.
MVFTS
(**kwargs)[source]¶ Bases:
pyFTS.common.fts.FTS
Multivariate extension of Chen’s ConventionalFTS method
-
append_variable
(var)[source]¶ Append a new endogenous variable to the model
Parameters: var – variable object Returns:
-
apply_transformations
(data, params=None, updateUoD=False, **kwargs)[source]¶ Apply the data transformations for data preprocessing
Parameters: - data – input data
- params – transformation parameters
- updateUoD –
- kwargs –
Returns: preprocessed data
-
pyFTS.models.multivariate.variable module¶
-
class
pyFTS.models.multivariate.variable.
Variable
(name, **kwargs)[source]¶ Bases:
object
A variable of a fuzzy time series multivariate model. Each variable contains its own transformations and partitioners.
-
alias
= None¶ A string with the alias of the variable
-
data_label
= None¶ A string with the column name on DataFrame
-
name
= None¶ A string with the name of the variable
-
pyFTS.models.multivariate.wmvfts module¶
-
class
pyFTS.models.multivariate.mvfts.
MVFTS
(**kwargs)[source] Bases:
pyFTS.common.fts.FTS
Multivariate extension of Chen’s ConventionalFTS method
-
append_variable
(var)[source] Append a new endogenous variable to the model
Parameters: var – variable object Returns:
-
apply_transformations
(data, params=None, updateUoD=False, **kwargs)[source] Apply the data transformations for data preprocessing
Parameters: - data – input data
- params – transformation parameters
- updateUoD –
- kwargs –
Returns: preprocessed data
-
clone_parameters
(model)[source] Import the parameters values from other model
Parameters: model –
-
forecast
(data, **kwargs)[source] Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
format_data
(data)[source]
-
generate_flrg
(flrs)[source]
-
generate_flrs
(data)[source]
-
generate_lhs_flrs
(data)[source]
-
train
(data, **kwargs)[source] Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-