pyFTS.models.seasonal package¶
Submodules¶
pyFTS.models.seasonal.SeasonalIndexer module¶
- class pyFTS.models.seasonal.SeasonalIndexer.DataFrameSeasonalIndexer(index_fields, index_seasons, data_field, **kwargs)[source]¶
Bases:
pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer
Use the Pandas.DataFrame index position to index the seasonality
- class pyFTS.models.seasonal.SeasonalIndexer.DateTimeSeasonalIndexer(date_field, index_fields, index_seasons, data_field, **kwargs)[source]¶
Bases:
pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer
Use a Pandas.DataFrame date field to index the seasonality
- class pyFTS.models.seasonal.SeasonalIndexer.LinearSeasonalIndexer(seasons, units, ignore=None, **kwargs)[source]¶
Bases:
pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer
Use the data array/list position to index the seasonality
pyFTS.models.seasonal.cmsfts module¶
pyFTS.models.seasonal.common module¶
- class pyFTS.models.seasonal.common.DateTime(value)[source]¶
Bases:
enum.Enum
Data and Time granularity for time granularity and seasonality identification
- day_of_month = 30¶
- day_of_week = 7¶
- day_of_year = 364¶
- half = 2¶
- hour = 24¶
- hour_of_day = 24¶
- hour_of_month = 744¶
- hour_of_week = 168¶
- hour_of_year = 8736¶
- minute = 60¶
- minute_of_day = 1440¶
- minute_of_hour = 60¶
- minute_of_month = 44640¶
- minute_of_week = 10080¶
- minute_of_year = 524160¶
- month = 12¶
- quarter = 4¶
- second = 60¶
- second_of_day = 86400¶
- second_of_hour = 3600¶
- second_of_minute = 60.00001¶
- sixth = 6¶
- third = 3¶
- year = 1¶
- class pyFTS.models.seasonal.common.FuzzySet(datepart, name, mf, parameters, centroid, alpha=1.0, **kwargs)[source]¶
Bases:
pyFTS.common.FuzzySet.FuzzySet
Temporal/Seasonal Fuzzy Set
pyFTS.models.seasonal.msfts module¶
pyFTS.models.seasonal.partitioner module¶
- class pyFTS.models.seasonal.partitioner.TimeGridPartitioner(**kwargs)[source]¶
Bases:
pyFTS.partitioners.partitioner.Partitioner
Even Length DateTime Grid Partitioner
- build(data)[source]¶
Perform the partitioning of the Universe of Discourse
- Parameters
data – training data
- Returns
- mask¶
A string with datetime formating mask
- search(data, **kwargs)[source]¶
Perform a search for the nearest fuzzy sets of the point ‘data’. This function were designed to work with several overlapped fuzzy sets.
- Parameters
data – the value to search for the nearest fuzzy sets
type – the return type: ‘index’ for the fuzzy set indexes or ‘name’ for fuzzy set names.
results – the number of nearest fuzzy sets to return
- Returns
a list with the nearest fuzzy sets
- season¶
Seasonality, a pyFTS.models.seasonal.common.DateTime object