<!doctype html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="X-UA-Compatible" content="IE=Edge" /> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>pyFTS.benchmarks.arima — pyFTS 1.2.3 documentation</title> <link rel="stylesheet" href="../../../_static/bizstyle.css" type="text/css" /> <link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" /> <script type="text/javascript" src="../../../_static/documentation_options.js"></script> <script type="text/javascript" src="../../../_static/jquery.js"></script> <script type="text/javascript" src="../../../_static/underscore.js"></script> <script type="text/javascript" src="../../../_static/doctools.js"></script> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <script type="text/javascript" src="../../../_static/bizstyle.js"></script> <link rel="index" title="Index" href="../../../genindex.html" /> <link rel="search" title="Search" href="../../../search.html" /> <meta name="viewport" content="width=device-width,initial-scale=1.0"> <!--[if lt IE 9]> <script type="text/javascript" src="_static/css3-mediaqueries.js"></script> <![endif]--> </head><body> <div class="related" role="navigation" aria-label="related navigation"> <h3>Navigation</h3> <ul> <li class="right" style="margin-right: 10px"> <a href="../../../genindex.html" title="General Index" accesskey="I">index</a></li> <li class="right" > <a href="../../../py-modindex.html" title="Python Module Index" >modules</a> |</li> <li class="nav-item nav-item-0"><a href="../../../index.html">pyFTS 1.2.3 documentation</a> »</li> <li class="nav-item nav-item-1"><a href="../../index.html" accesskey="U">Module code</a> »</li> </ul> </div> <div class="sphinxsidebar" role="navigation" aria-label="main navigation"> <div class="sphinxsidebarwrapper"> <p class="logo"><a href="../../../index.html"> <img class="logo" src="../../../_static/logo_heading2.png" alt="Logo"/> </a></p> <div id="searchbox" style="display: none" role="search"> <h3>Quick search</h3> <div class="searchformwrapper"> <form class="search" action="../../../search.html" method="get"> <input type="text" name="q" /> <input type="submit" value="Go" /> <input type="hidden" name="check_keywords" value="yes" /> <input type="hidden" name="area" value="default" /> </form> </div> </div> <script type="text/javascript">$('#searchbox').show(0);</script> </div> </div> <div class="document"> <div class="documentwrapper"> <div class="bodywrapper"> <div class="body" role="main"> <h1>Source code for pyFTS.benchmarks.arima</h1><div class="highlight"><pre> <span></span><span class="ch">#!/usr/bin/python</span> <span class="c1"># -*- coding: utf8 -*-</span> <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> <span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span> <span class="kn">from</span> <span class="nn">statsmodels.tsa.arima_model</span> <span class="k">import</span> <span class="n">ARIMA</span> <span class="k">as</span> <span class="n">stats_arima</span> <span class="kn">import</span> <span class="nn">scipy.stats</span> <span class="k">as</span> <span class="nn">st</span> <span class="kn">from</span> <span class="nn">pyFTS.common</span> <span class="k">import</span> <span class="n">SortedCollection</span><span class="p">,</span> <span class="n">fts</span> <span class="kn">from</span> <span class="nn">pyFTS.probabilistic</span> <span class="k">import</span> <span class="n">ProbabilityDistribution</span> <div class="viewcode-block" id="ARIMA"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.arima.ARIMA">[docs]</a><span class="k">class</span> <span class="nc">ARIMA</span><span class="p">(</span><span class="n">fts</span><span class="o">.</span><span class="n">FTS</span><span class="p">):</span> <span class="sd">"""</span> <span class="sd"> Façade for statsmodels.tsa.arima_model</span> <span class="sd"> """</span> <span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span> <span class="nb">super</span><span class="p">(</span><span class="n">ARIMA</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> <span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="s2">"ARIMA"</span> <span class="bp">self</span><span class="o">.</span><span class="n">detail</span> <span class="o">=</span> <span class="s2">"Auto Regressive Integrated Moving Average"</span> <span class="bp">self</span><span class="o">.</span><span class="n">is_high_order</span> <span class="o">=</span> <span class="kc">True</span> <span class="bp">self</span><span class="o">.</span><span class="n">has_point_forecasting</span> <span class="o">=</span> <span class="kc">True</span> <span class="bp">self</span><span class="o">.</span><span class="n">has_interval_forecasting</span> <span class="o">=</span> <span class="kc">True</span> <span class="bp">self</span><span class="o">.</span><span class="n">has_probability_forecasting</span> <span class="o">=</span> <span class="kc">True</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span> <span class="o">=</span> <span class="kc">None</span> <span class="bp">self</span><span class="o">.</span><span class="n">model_fit</span> <span class="o">=</span> <span class="kc">None</span> <span class="bp">self</span><span class="o">.</span><span class="n">trained_data</span> <span class="o">=</span> <span class="kc">None</span> <span class="bp">self</span><span class="o">.</span><span class="n">p</span> <span class="o">=</span> <span class="mi">1</span> <span class="bp">self</span><span class="o">.</span><span class="n">d</span> <span class="o">=</span> <span class="mi">0</span> <span class="bp">self</span><span class="o">.</span><span class="n">q</span> <span class="o">=</span> <span class="mi">0</span> <span class="bp">self</span><span class="o">.</span><span class="n">benchmark_only</span> <span class="o">=</span> <span class="kc">True</span> <span class="bp">self</span><span class="o">.</span><span class="n">min_order</span> <span class="o">=</span> <span class="mi">1</span> <span class="bp">self</span><span class="o">.</span><span class="n">alpha</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"alpha"</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">)</span> <span class="bp">self</span><span class="o">.</span><span class="n">order</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"order"</span><span class="p">,</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">0</span><span class="p">,</span><span class="mi">0</span><span class="p">))</span> <span class="bp">self</span><span class="o">.</span><span class="n">_decompose_order</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">order</span><span class="p">)</span> <span class="k">def</span> <span class="nf">_decompose_order</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">order</span><span class="p">):</span> <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">order</span><span class="p">,</span> <span class="p">(</span><span class="nb">tuple</span><span class="p">,</span> <span class="nb">set</span><span class="p">,</span> <span class="nb">list</span><span class="p">)):</span> <span class="bp">self</span><span class="o">.</span><span class="n">p</span> <span class="o">=</span> <span class="n">order</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="bp">self</span><span class="o">.</span><span class="n">d</span> <span class="o">=</span> <span class="n">order</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="bp">self</span><span class="o">.</span><span class="n">q</span> <span class="o">=</span> <span class="n">order</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span> <span class="bp">self</span><span class="o">.</span><span class="n">order</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">p</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">q</span> <span class="o">+</span> <span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">q</span> <span class="o">-</span> <span class="mi">1</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">q</span> <span class="o">></span> <span class="mi">0</span> <span class="k">else</span> <span class="mi">0</span><span class="p">)</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_lag</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">order</span> <span class="bp">self</span><span class="o">.</span><span class="n">d</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">transformations</span><span class="p">)</span> <span class="bp">self</span><span class="o">.</span><span class="n">shortname</span> <span class="o">=</span> <span class="s2">"ARIMA("</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">p</span><span class="p">)</span> <span class="o">+</span> <span class="s2">","</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">d</span><span class="p">)</span> <span class="o">+</span> <span class="s2">","</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">q</span><span class="p">)</span> <span class="o">+</span> <span class="s2">") - "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">alpha</span><span class="p">)</span> <div class="viewcode-block" id="ARIMA.train"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.arima.ARIMA.train">[docs]</a> <span class="k">def</span> <span class="nf">train</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span> <span class="k">if</span> <span class="s1">'order'</span> <span class="ow">in</span> <span class="n">kwargs</span><span class="p">:</span> <span class="n">order</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">pop</span><span class="p">(</span><span class="s1">'order'</span><span class="p">)</span> <span class="bp">self</span><span class="o">.</span><span class="n">_decompose_order</span><span class="p">(</span><span class="n">order</span><span class="p">)</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">indexer</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span> <span class="n">data</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">indexer</span><span class="o">.</span><span class="n">get_data</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="k">try</span><span class="p">:</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span> <span class="o">=</span> <span class="n">stats_arima</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">order</span><span class="o">=</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">p</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">d</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">q</span><span class="p">))</span> <span class="bp">self</span><span class="o">.</span><span class="n">model_fit</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">disp</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span> <span class="k">except</span> <span class="ne">Exception</span> <span class="k">as</span> <span class="n">ex</span><span class="p">:</span> <span class="nb">print</span><span class="p">(</span><span class="n">ex</span><span class="p">)</span> <span class="bp">self</span><span class="o">.</span><span class="n">model_fit</span> <span class="o">=</span> <span class="kc">None</span></div> <div class="viewcode-block" id="ARIMA.ar"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.arima.ARIMA.ar">[docs]</a> <span class="k">def</span> <span class="nf">ar</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span> <span class="k">return</span> <span class="n">data</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">model_fit</span><span class="o">.</span><span class="n">arparams</span><span class="p">)</span></div> <div class="viewcode-block" id="ARIMA.ma"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.arima.ARIMA.ma">[docs]</a> <span class="k">def</span> <span class="nf">ma</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">):</span> <span class="k">return</span> <span class="n">data</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">model_fit</span><span class="o">.</span><span class="n">maparams</span><span class="p">)</span></div> <div class="viewcode-block" id="ARIMA.forecast"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.arima.ARIMA.forecast">[docs]</a> <span class="k">def</span> <span class="nf">forecast</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">model_fit</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> <span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">nan</span> <span class="n">ndata</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span> <span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span> <span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span> <span class="n">ar</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="bp">self</span><span class="o">.</span><span class="n">ar</span><span class="p">(</span><span class="n">ndata</span><span class="p">[</span><span class="n">k</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">p</span><span class="p">:</span> <span class="n">k</span><span class="p">])</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">p</span><span class="p">,</span> <span class="n">l</span><span class="o">+</span><span class="mi">1</span><span class="p">)])</span> <span class="c1">#+1 to forecast one step ahead given all available lags</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">q</span> <span class="o">></span> <span class="mi">0</span><span class="p">:</span> <span class="n">residuals</span> <span class="o">=</span> <span class="n">ndata</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">p</span><span class="o">-</span><span class="mi">1</span><span class="p">:]</span> <span class="o">-</span> <span class="n">ar</span> <span class="n">ma</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="bp">self</span><span class="o">.</span><span class="n">ma</span><span class="p">(</span><span class="n">residuals</span><span class="p">[</span><span class="n">k</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">q</span><span class="p">:</span> <span class="n">k</span><span class="p">])</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">q</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">residuals</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)])</span> <span class="n">ret</span> <span class="o">=</span> <span class="n">ar</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">q</span> <span class="o">-</span> <span class="mi">1</span><span class="p">:]</span> <span class="o">+</span> <span class="n">ma</span> <span class="n">ret</span> <span class="o">=</span> <span class="n">ret</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">q</span><span class="p">:]</span> <span class="k">else</span><span class="p">:</span> <span class="n">ret</span> <span class="o">=</span> <span class="n">ar</span> <span class="c1">#ret = self.apply_inverse_transformations(ret, params=[data[self.order - 1:]]) nforecasts = np.array(forecasts)</span> <span class="k">return</span> <span class="n">ret</span></div> <div class="viewcode-block" id="ARIMA.forecast_interval"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.arima.ARIMA.forecast_interval">[docs]</a> <span class="k">def</span> <span class="nf">forecast_interval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">model_fit</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> <span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">nan</span> <span class="n">sigma</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">model_fit</span><span class="o">.</span><span class="n">sigma2</span><span class="p">)</span> <span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">order</span><span class="p">,</span> <span class="n">l</span><span class="o">+</span><span class="mi">1</span><span class="p">):</span> <span class="n">tmp</span> <span class="o">=</span> <span class="p">[]</span> <span class="n">sample</span> <span class="o">=</span> <span class="p">[</span><span class="n">data</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">k</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">order</span><span class="p">,</span> <span class="n">k</span><span class="p">)]</span> <span class="n">mean</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">forecast</span><span class="p">(</span><span class="n">sample</span><span class="p">)</span> <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">mean</span><span class="p">,(</span><span class="nb">list</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">)):</span> <span class="n">mean</span> <span class="o">=</span> <span class="n">mean</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="n">tmp</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">mean</span> <span class="o">+</span> <span class="n">st</span><span class="o">.</span><span class="n">norm</span><span class="o">.</span><span class="n">ppf</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">alpha</span><span class="p">)</span> <span class="o">*</span> <span class="n">sigma</span><span class="p">)</span> <span class="n">tmp</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">mean</span> <span class="o">+</span> <span class="n">st</span><span class="o">.</span><span class="n">norm</span><span class="o">.</span><span class="n">ppf</span><span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">alpha</span><span class="p">)</span> <span class="o">*</span> <span class="n">sigma</span><span class="p">)</span> <span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span> <span class="k">return</span> <span class="n">ret</span></div> <div class="viewcode-block" id="ARIMA.forecast_ahead_interval"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.arima.ARIMA.forecast_ahead_interval">[docs]</a> <span class="k">def</span> <span class="nf">forecast_ahead_interval</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ndata</span><span class="p">,</span> <span class="n">steps</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">model_fit</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> <span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">nan</span> <span class="n">smoothing</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"smoothing"</span><span class="p">,</span><span class="mf">0.5</span><span class="p">)</span> <span class="n">sigma</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">model_fit</span><span class="o">.</span><span class="n">sigma2</span><span class="p">)</span> <span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">ndata</span><span class="p">)</span> <span class="n">nmeans</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">forecast_ahead</span><span class="p">(</span><span class="n">ndata</span><span class="p">,</span> <span class="n">steps</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> <span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">steps</span><span class="p">):</span> <span class="n">tmp</span> <span class="o">=</span> <span class="p">[]</span> <span class="n">hsigma</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="n">k</span><span class="o">*</span><span class="n">smoothing</span><span class="p">)</span><span class="o">*</span><span class="n">sigma</span> <span class="n">tmp</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nmeans</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">+</span> <span class="n">st</span><span class="o">.</span><span class="n">norm</span><span class="o">.</span><span class="n">ppf</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">alpha</span><span class="p">)</span> <span class="o">*</span> <span class="n">hsigma</span><span class="p">)</span> <span class="n">tmp</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nmeans</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">+</span> <span class="n">st</span><span class="o">.</span><span class="n">norm</span><span class="o">.</span><span class="n">ppf</span><span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">alpha</span><span class="p">)</span> <span class="o">*</span> <span class="n">hsigma</span><span class="p">)</span> <span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span> <span class="k">return</span> <span class="n">ret</span></div> <div class="viewcode-block" id="ARIMA.forecast_distribution"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.arima.ARIMA.forecast_distribution">[docs]</a> <span class="k">def</span> <span class="nf">forecast_distribution</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span> <span class="n">sigma</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">model_fit</span><span class="o">.</span><span class="n">sigma2</span><span class="p">)</span> <span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">order</span><span class="p">,</span> <span class="n">l</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span> <span class="n">sample</span> <span class="o">=</span> <span class="p">[</span><span class="n">data</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">k</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">order</span><span class="p">,</span> <span class="n">k</span><span class="p">)]</span> <span class="n">mean</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">forecast</span><span class="p">(</span><span class="n">sample</span><span class="p">)</span> <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">mean</span><span class="p">,</span> <span class="p">(</span><span class="nb">list</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">)):</span> <span class="n">mean</span> <span class="o">=</span> <span class="n">mean</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="n">dist</span> <span class="o">=</span> <span class="n">ProbabilityDistribution</span><span class="o">.</span><span class="n">ProbabilityDistribution</span><span class="p">(</span><span class="nb">type</span><span class="o">=</span><span class="s2">"histogram"</span><span class="p">,</span> <span class="n">uod</span><span class="o">=</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">original_min</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">original_max</span><span class="p">])</span> <span class="n">intervals</span> <span class="o">=</span> <span class="p">[]</span> <span class="k">for</span> <span class="n">alpha</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mf">0.05</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">):</span> <span class="n">qt1</span> <span class="o">=</span> <span class="n">mean</span> <span class="o">+</span> <span class="n">st</span><span class="o">.</span><span class="n">norm</span><span class="o">.</span><span class="n">ppf</span><span class="p">(</span><span class="n">alpha</span><span class="p">)</span> <span class="o">*</span> <span class="n">sigma</span> <span class="n">qt2</span> <span class="o">=</span> <span class="n">mean</span> <span class="o">+</span> <span class="n">st</span><span class="o">.</span><span class="n">norm</span><span class="o">.</span><span class="n">ppf</span><span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">alpha</span><span class="p">)</span> <span class="o">*</span> <span class="n">sigma</span> <span class="n">intervals</span><span class="o">.</span><span class="n">append</span><span class="p">([</span><span class="n">qt1</span><span class="p">,</span> <span class="n">qt2</span><span class="p">])</span> <span class="n">dist</span><span class="o">.</span><span class="n">append_interval</span><span class="p">(</span><span class="n">intervals</span><span class="p">)</span> <span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">dist</span><span class="p">)</span> <span class="k">return</span> <span class="n">ret</span></div> <div class="viewcode-block" id="ARIMA.forecast_ahead_distribution"><a class="viewcode-back" href="../../../pyFTS.benchmarks.html#pyFTS.benchmarks.arima.ARIMA.forecast_ahead_distribution">[docs]</a> <span class="k">def</span> <span class="nf">forecast_ahead_distribution</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">,</span> <span class="n">steps</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span> <span class="n">smoothing</span> <span class="o">=</span> <span class="n">kwargs</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s2">"smoothing"</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">)</span> <span class="n">sigma</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">model_fit</span><span class="o">.</span><span class="n">sigma2</span><span class="p">)</span> <span class="n">l</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> <span class="n">ret</span> <span class="o">=</span> <span class="p">[]</span> <span class="n">nmeans</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">forecast_ahead</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">steps</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> <span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">steps</span><span class="p">):</span> <span class="n">dist</span> <span class="o">=</span> <span class="n">ProbabilityDistribution</span><span class="o">.</span><span class="n">ProbabilityDistribution</span><span class="p">(</span><span class="nb">type</span><span class="o">=</span><span class="s2">"histogram"</span><span class="p">,</span> <span class="n">uod</span><span class="o">=</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">original_min</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">original_max</span><span class="p">])</span> <span class="n">intervals</span> <span class="o">=</span> <span class="p">[]</span> <span class="k">for</span> <span class="n">alpha</span> <span class="ow">in</span> <span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mf">0.05</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">):</span> <span class="n">tmp</span> <span class="o">=</span> <span class="p">[]</span> <span class="n">hsigma</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span> <span class="o">+</span> <span class="n">k</span> <span class="o">*</span> <span class="n">smoothing</span><span class="p">)</span> <span class="o">*</span> <span class="n">sigma</span> <span class="n">tmp</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nmeans</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">+</span> <span class="n">st</span><span class="o">.</span><span class="n">norm</span><span class="o">.</span><span class="n">ppf</span><span class="p">(</span><span class="n">alpha</span><span class="p">)</span> <span class="o">*</span> <span class="n">hsigma</span><span class="p">)</span> <span class="n">tmp</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">nmeans</span><span class="p">[</span><span class="n">k</span><span class="p">]</span> <span class="o">+</span> <span class="n">st</span><span class="o">.</span><span class="n">norm</span><span class="o">.</span><span class="n">ppf</span><span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="n">alpha</span><span class="p">)</span> <span class="o">*</span> <span class="n">hsigma</span><span class="p">)</span> <span class="n">intervals</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span> <span class="n">dist</span><span class="o">.</span><span class="n">append_interval</span><span class="p">(</span><span class="n">intervals</span><span class="p">)</span> <span class="n">ret</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">dist</span><span class="p">)</span> <span class="k">return</span> <span class="n">ret</span></div></div> </pre></div> </div> </div> </div> <div class="clearer"></div> </div> <div class="related" role="navigation" aria-label="related navigation"> <h3>Navigation</h3> <ul> <li class="right" style="margin-right: 10px"> <a href="../../../genindex.html" title="General Index" >index</a></li> <li class="right" > <a href="../../../py-modindex.html" title="Python Module Index" >modules</a> |</li> <li class="nav-item nav-item-0"><a href="../../../index.html">pyFTS 1.2.3 documentation</a> »</li> <li class="nav-item nav-item-1"><a href="../../index.html" >Module code</a> »</li> </ul> </div> <div class="footer" role="contentinfo"> © Copyright 2018, Machine Intelligence and Data Science Laboratory - UFMG - Brazil. Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.7.2. </div> </body> </html>