#!/usr/bin/python # -*- coding: utf8 -*- import os import numpy as np import pandas as pd import matplotlib as plt import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import pandas as pd from pyFTS.partitioners import Grid from pyFTS.common import FLR,FuzzySet,Membership,Transformations from pyFTS import fts,sfts from pyFTS.models import msfts from pyFTS.benchmarks import benchmarks as bchmk from pyFTS.benchmarks import Measures os.chdir("/home/petronio/dados/Dropbox/Doutorado/Disciplinas/AdvancedFuzzyTimeSeriesModels/") sonda = pd.read_csv("DataSets/SONDA_BSB_CLEAN.csv", sep=";") sonda = sonda[:][527041:] sonda.index = np.arange(0,len(sonda.index)) sonda_treino = sonda[:1051200] sonda_teste = sonda[1051201:] #res = bchmk.simpleSearch_RMSE(sonda_treino, sonda_teste, # sfts.SeasonalFTS,np.arange(3,30),[1],parameters=1440, # tam=[15,8], plotforecasts=False,elev=45, azim=40, # save=False,file="pictures/sonda_sfts_error_surface", intervals=False) from pyFTS.models.seasonal import SeasonalIndexer from pyFTS.models import msfts from pyFTS.common import FLR ix = SeasonalIndexer.DataFrameSeasonalIndexer(['day','min'],[30, 60],'glo_avg') fs = Grid.GridPartitionerTrimf(ix.get_data(sonda_treino),20) #mfts = msfts.MultiSeasonalFTS("",ix) #mfts.train(sonda_teste,fs) #print(str(mfts)) #[10, 508] flrs = FLR.generateIndexedFLRs(fs, ix, sonda_treino[110000:111450]) for i in flrs: #ix.get_data(sonda_treino[111430:111450]): print(i)