pyFTS.models.ensemble package¶
Submodules¶
pyFTS.models.ensemble.ensemble module¶
EnsembleFTS wraps several FTS methods to ensemble their forecasts, providing point, interval and probabilistic forecasting.
Silva, P. C. L et al. Probabilistic Forecasting with Seasonal Ensemble Fuzzy Time-Series XIII Brazilian Congress on Computational Intelligence, 2017. Rio de Janeiro, Brazil.
-
class
pyFTS.models.ensemble.ensemble.AllMethodEnsembleFTS(**kwargs)[source]¶ Bases:
pyFTS.models.ensemble.ensemble.EnsembleFTSCreates an EnsembleFTS with all point forecast methods, sharing the same partitioner
-
class
pyFTS.models.ensemble.ensemble.EnsembleFTS(**kwargs)[source]¶ Bases:
pyFTS.common.fts.FTSEnsemble FTS
-
alpha¶ The quantiles
-
append_model(model)[source]¶ Append a new trained model to the ensemble
- Parameters
model – FTS model
-
forecast(data, **kwargs)[source]¶ Point forecast one step ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
kwargs – model specific parameters
- Returns
a list with the forecasted values
-
forecast_ahead_distribution(data, steps, **kwargs)[source]¶ Probabilistic forecast n steps ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
steps – the number of steps ahead to forecast
start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
- Returns
a list with the forecasted Probability Distributions
-
forecast_ahead_interval(data, steps, **kwargs)[source]¶ Interval forecast n steps ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
steps – the number of steps ahead to forecast
start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
- Returns
a list with the forecasted intervals
-
forecast_distribution(data, **kwargs)[source]¶ Probabilistic forecast one step ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
kwargs – model specific parameters
- Returns
a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions
-
forecast_interval(data, **kwargs)[source]¶ Interval forecast one step ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
kwargs – model specific parameters
- Returns
a list with the prediction intervals
-
get_UoD()[source]¶ Returns the interval of the known bounds of the universe of discourse (UoD), i. e., the known minimum and maximum values of the time series.
- Returns
A set with the lower and the upper bounds of the UoD
-
interval_method¶ The method used to mix the several model’s forecasts into a interval forecast. Options: quantile, extremum, normal
-
models¶ A list of FTS models, the ensemble components
-
parameters¶ A list with the parameters for each component model
-
point_method¶ The method used to mix the several model’s forecasts into a unique point forecast. Options: mean, median, quantile, exponential
-
-
class
pyFTS.models.ensemble.ensemble.SimpleEnsembleFTS(**kwargs)[source]¶ Bases:
pyFTS.models.ensemble.ensemble.EnsembleFTSAn homogeneous FTS method ensemble with variations on partitionings and orders.
-
method¶ FTS method class that will be used on internal models
-
orders¶ Possible variations of order on internal models
-
partitioner_method¶ UoD partitioner class that will be used on internal methods
-
partitions¶ Possible variations of number of partitions on internal models
-
pyFTS.models.ensemble.multiseasonal module¶
Silva, P. C. L et al. Probabilistic Forecasting with Seasonal Ensemble Fuzzy Time-Series XIII Brazilian Congress on Computational Intelligence, 2017. Rio de Janeiro, Brazil.
-
class
pyFTS.models.ensemble.multiseasonal.SeasonalEnsembleFTS(name, **kwargs)[source]¶ Bases:
pyFTS.models.ensemble.ensemble.EnsembleFTS-
forecast_distribution(data, **kwargs)[source]¶ Probabilistic forecast one step ahead
- Parameters
data – time series data with the minimal length equal to the max_lag of the model
kwargs – model specific parameters
- Returns
a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions
-
Module contents¶
Meta FTS that aggregates other FTS methods