pyFTS.probabilistic package¶
Module contents¶
Probability Distribution objects
Submodules¶
pyFTS.probabilistic.ProbabilityDistribution module¶
- class pyFTS.probabilistic.ProbabilityDistribution.ProbabilityDistribution(type='KDE', **kwargs)[source]¶
Bases:
object
Represents a discrete or continous probability distribution If type is histogram, the PDF is discrete If type is KDE the PDF is continuous
- append(values)[source]¶
Increment the frequency count for the values
- Parameters
values – A list of values to account the frequency
- append_interval(intervals)[source]¶
Increment the frequency count for all values inside an interval
- Parameters
intervals – A list of intervals do increment the frequency
- averageloglikelihood(data)[source]¶
Average log likelihood of the probability distribution with respect to data
- Parameters
data –
- Returns
- bins¶
Number of bins on a discrete PDF
- crossentropy(q)[source]¶
Cross entropy between the actual probability distribution and the informed one, H(P,Q) = - ∑ P(x) log ( Q(x) )
- Parameters
q – a probabilistic.ProbabilityDistribution object
- Returns
Cross entropy between this probability distribution and the given distribution
- cumulative(values)[source]¶
Return the cumulative probability densities for the input values, such that F(x) = P(X <= x)
- Parameters
values – A list of input values
- Returns
The cumulative probability densities for the input values
- density(values)[source]¶
Return the probability densities for the input values
- Parameters
values – List of values to return the densities
- Returns
List of probability densities for the input values
- differential_offset(value)[source]¶
Auxiliary function for probability distributions of differentiated data
- Parameters
value –
- Returns
- empiricalloglikelihood()[source]¶
Empirical Log Likelihood of the probability distribution, L(P) = ∑ log( P(x) )
- Returns
- entropy()[source]¶
Return the entropy of the probability distribution, H(P) = E[ -ln P(X) ] = - ∑ P(x) log ( P(x) )
:return:the entropy of the probability distribution
- expected_value()[source]¶
Return the expected value of the distribution, as E[X] = ∑ x * P(x)
- Returns
The expected value of the distribution
- kullbackleiblerdivergence(q)[source]¶
Kullback-Leibler divergence between the actual probability distribution and the informed one. DKL(P || Q) = - ∑ P(x) log( P(X) / Q(x) )
- Parameters
q – a probabilistic.ProbabilityDistribution object
- Returns
Kullback-Leibler divergence
- labels¶
Bins labels on a discrete PDF
- pseudologlikelihood(data)[source]¶
Pseudo log likelihood of the probability distribution with respect to data
- Parameters
data –
- Returns
- quantile(values)[source]¶
Return the Universe of Discourse values in relation to the quantile input values, such that Q(tau) = min( {x | F(x) >= tau })
- Parameters
values – input values
- Returns
The list of the quantile values for the input values
- set(value, density)[source]¶
Assert a probability ‘density’ for a certain value ‘value’, such that P(value) = density
- Parameters
value – A value in the universe of discourse from the distribution
density – The probability density to assign to the value
- type¶
If type is histogram, the PDF is discrete If type is KDE the PDF is continuous
- uod¶
Universe of discourse