from pyFTS.common import Membership, FuzzySet as FS
from pyFTS.common.Composite import FuzzySet as Composite
from pyFTS.partitioners import partitioner, Grid
from pyFTS.models.seasonal.common import DateTime, FuzzySet, strip_datepart
import numpy as np
import matplotlib.pylab as plt
from scipy.spatial import KDTree
[docs]class TimeGridPartitioner(partitioner.Partitioner):
"""Even Length DateTime Grid Partitioner"""
def __init__(self, **kwargs):
"""
Even Length Grid Partitioner
:param seasonality: Time granularity, from pyFTS.models.seasonal.common.DateTime
:param data: Training data of which the universe of discourse will be extracted. The universe of discourse is the open interval between the minimum and maximum values of the training data.
:param npart: The number of universe of discourse partitions, i.e., the number of fuzzy sets that will be created
:param func: Fuzzy membership function (pyFTS.common.Membership)
"""
super(TimeGridPartitioner, self).__init__(name="TimeGrid", preprocess=False, **kwargs)
self.season = kwargs.get('seasonality', DateTime.day_of_year)
'''Seasonality, a pyFTS.models.seasonal.common.DateTime object'''
self.mask = kwargs.get('mask', '%Y-%m-%d %H:%M:%S')
'''A string with datetime formating mask'''
data = kwargs.get('data', None)
if self.season == DateTime.year:
ndata = [strip_datepart(k, self.season) for k in data]
self.min = min(ndata)
self.max = max(ndata)
else:
tmp = (self.season.value / self.partitions) / 2
self.min = tmp
self.max = self.season.value + tmp
self.type = kwargs.get('type','seasonal')
self.sets = self.build(None)
if self.ordered_sets is None and self.setnames is not None:
self.ordered_sets = self.setnames
else:
self.ordered_sets = FS.set_ordered(self.sets)
[docs] def build(self, data):
sets = {}
kwargs = {'variable': self.variable, 'type': self.type }
if self.season == DateTime.year:
dlen = (self.max - self.min)
partlen = dlen / self.partitions
elif self.season == DateTime.day_of_week:
self.min, self.max, partlen, pl2 = 0, 7, 1, 1
elif self.season == DateTime.minute:
self.min, self.max, partlen, pl2 = 0, 60, 1, 1
elif self.season == DateTime.hour:
self.min, self.max, partlen, pl2 = 0, 24, 1, 1
elif self.season == DateTime.month:
self.min, self.max, partlen, pl2 = 1, 13, 1, 1
elif self.season in (DateTime.half, DateTime.third, DateTime.quarter, DateTime.sixth):
self.min, self.max, partlen, pl2 = 1, self.season.value+1, 1, 1
else:
partlen = self.season.value / self.partitions
pl2 = partlen / 2
for count, midpoint in enumerate(np.arange(self.min, self.max, partlen)):
set_name = self.get_name(count)
if self.membership_function == Membership.trimf:
if midpoint == self.min or count == 0:
tmp = Composite(set_name, superset=True, **kwargs)
tmp.append_set(FuzzySet(self.season, set_name, Membership.trimf,
[self.season.value - pl2, self.season.value,
self.season.value + pl2], self.season.value, alpha=1,
**kwargs))
tmp.append_set(FuzzySet(self.season, set_name, Membership.trimf,
[midpoint - partlen, midpoint, midpoint + partlen], midpoint,
**kwargs))
tmp.centroid = midpoint
sets[set_name] = tmp
elif midpoint == self.max - partlen or count == self.partitions - 1:
tmp = Composite(set_name, superset=True, **kwargs)
tmp.append_set(FuzzySet(self.season, set_name, Membership.trimf,
[-pl2, 0.0,
pl2], 0.0, alpha=1,
**kwargs))
tmp.append_set(FuzzySet(self.season, set_name, Membership.trimf,
[midpoint - partlen, midpoint, midpoint + partlen], midpoint,
**kwargs))
tmp.centroid = midpoint
sets[set_name] = tmp
else:
sets[set_name] = FuzzySet(self.season, set_name, Membership.trimf,
[midpoint - partlen, midpoint, midpoint + partlen], midpoint,
**kwargs)
elif self.membership_function == Membership.gaussmf:
sets[set_name] = FuzzySet(self.season, set_name, Membership.gaussmf, [midpoint, partlen / 3], midpoint,
**kwargs)
elif self.membership_function == Membership.trapmf:
q = partlen / 4
if midpoint == self.min:
tmp = Composite(set_name, superset=True)
tmp.append_set(FuzzySet(self.season, set_name, Membership.trimf,
[self.season.value - pl2, self.season.value,
self.season.value + 0.0000001], 0,
**kwargs))
tmp.append_set(FuzzySet(self.season, set_name, Membership.trapmf,
[midpoint - partlen, midpoint - q, midpoint + q, midpoint + partlen], midpoint,
**kwargs))
tmp.centroid = midpoint
sets[set_name] = tmp
else:
sets[set_name] = FuzzySet(self.season, set_name, Membership.trapmf,
[midpoint - partlen, midpoint - q, midpoint + q, midpoint + partlen], midpoint,
**kwargs)
count += 1
self.min = 0
return sets
[docs] def build_index(self):
points = []
fset = self.sets[self.ordered_sets[0]]
points.append([fset.sets[1].lower, fset.sets[1].centroid, fset.sets[1].upper])
for ct, key in enumerate(self.ordered_sets[1:-1]):
fset = self.sets[key]
points.append([fset.lower, fset.centroid, fset.upper])
fset = self.sets[self.ordered_sets[-1]]
points.append([fset.sets[1].lower, fset.sets[1].centroid, fset.sets[1].upper])
import sys
sys.setrecursionlimit(100000)
self.kdtree = KDTree(points)
sys.setrecursionlimit(1000)
[docs] def search(self, data, **kwargs):
'''
Perform a search for the nearest fuzzy sets of the point 'data'. This function were designed to work with several
overlapped fuzzy sets.
:param data: the value to search for the nearest fuzzy sets
:param type: the return type: 'index' for the fuzzy set indexes or 'name' for fuzzy set names.
:param results: the number of nearest fuzzy sets to return
:return: a list with the nearest fuzzy sets
'''
type = kwargs.get('type','index')
results = kwargs.get('results',3)
if self.kdtree is None:
self.build_index()
_, ix = self.kdtree.query([data, data, data], results)
ix = ix.tolist()
if 0 in ix:
ix.insert(0, self.partitions-1)
elif self.partitions-1 in ix:
ix.insert(0, 0)
if type == 'name':
return [self.ordered_sets[k] for k in sorted(ix)]
else:
return sorted(ix)
[docs] def plot(self, ax):
"""
Plot the
:param ax:
:return:
"""
ax.set_title(self.name)
ax.set_ylim([0, 1])
ax.set_xlim([0, self.season.value])
ticks = []
x = []
for key in self.sets.keys():
s = self.sets[key]
if s.type == 'composite':
for ss in s.sets:
self.plot_set(ax, ss)
else:
self.plot_set(ax, s)
ticks.append(str(round(s.centroid, 0)) + '\n' + s.name)
x.append(s.centroid)
ax.xaxis.set_ticklabels(ticks)
ax.xaxis.set_ticks(x)