Source code for pyFTS.benchmarks.ResidualAnalysis

#!/usr/bin/python
# -*- coding: utf8 -*-

"""Residual Analysis methods"""

import numpy as np
import pandas as pd
import matplotlib as plt
import matplotlib.pyplot as plt
from pyFTS.common import Transformations,Util
from pyFTS.benchmarks import Measures
from scipy import stats


[docs]def residuals(targets, forecasts, order=1): """First order residuals""" return np.array(targets[order:]) - np.array(forecasts[:-1])
[docs]def ljung_box_test(residuals, lags=[1,2,3], alpha=0.5): from statsmodels.stats.diagnostic import acorr_ljungbox from scipy.stats import chi2 stat, pval = acorr_ljungbox(residuals, lags=lags) rows = [] for ct, Q in enumerate(stat): lag = ct+1 p_value = 1 - chi2.cdf(Q, df=lag) critical_value = chi2.ppf(1 - alpha, df=lag) rows.append([lag, Q, p_value, critical_value, 'H0 accepted' if Q > critical_value else 'H0 rejected']) return pd.DataFrame(rows, columns=['Lag','Statistic','p-Value','Critical Value', 'Result'])
[docs]def compare_residuals(data, models, alpha=.05): """ Compare residual's statistics of several models :param data: test data :param models: :return: a Pandas dataframe with the Box-Ljung statistic for each model """ from statsmodels.stats.diagnostic import acorr_ljungbox rows = [] columns = ["Model","Order","AVG","STD","Box-Ljung","p-value","Result"] for mfts in models: forecasts = mfts.predict(data) res = residuals(data, forecasts, mfts.order+1) mu = np.mean(res) sig = np.std(res) row = [mfts.shortname, mfts.order, mu, sig] stat, pval = acorr_ljungbox(res) test = 'H0 Accepted' if pval > alpha else 'H0 Rejected' row.extend([stat, pval, test]) rows.append(row) return pd.DataFrame(rows, columns=columns)
[docs]def plot_residuals_by_model(targets, models, tam=[8, 8], save=False, file=None): import scipy as sp fig, axes = plt.subplots(nrows=len(models), ncols=4, figsize=tam) for c, mfts in enumerate(models, start=0): if len(models) > 1: ax = axes[c] else: ax = axes forecasts = mfts.predict(targets) res = residuals(targets, forecasts, mfts.order) mu = np.mean(res) sig = np.std(res) if c == 0: ax[0].set_title("Residuals", size='large') ax[0].set_ylabel(mfts.shortname, size='large') ax[0].set_xlabel(' ') ax[0].plot(res) if c == 0: ax[1].set_title("Autocorrelation", size='large') ax[1].set_ylabel('ACS') ax[1].set_xlabel('Lag') ax[1].acorr(res) if c == 0: ax[2].set_title("Histogram", size='large') ax[2].set_ylabel('Freq') ax[2].set_xlabel('Bins') ax[2].hist(res) if c == 0: ax[3].set_title("QQ Plot", size='large') _, (__, ___, r) = sp.stats.probplot(res, plot=ax[3], fit=True) plt.tight_layout() Util.show_and_save_image(fig, file, save)
[docs]def single_plot_residuals(res, order, tam=[10, 7], save=False, file=None): import scipy as sp fig, ax = plt.subplots(nrows=2, ncols=2, figsize=tam) ax[0][0].set_title("Residuals", size='large') ax[0][0].plot(res) ax[0][1].set_title("Autocorrelation", size='large') ax[0][1].set_ylabel('ACF') ax[0][1].set_xlabel('Lag') ax[0][1].acorr(res) ax[1][0].set_title("Histogram", size='large') ax[1][0].set_ylabel('Freq') ax[1][0].set_xlabel('Bins') ax[1][0].hist(res) _, (__, ___, r) = sp.stats.probplot(res, plot=ax[1][1], fit=True) plt.tight_layout() Util.show_and_save_image(fig, file, save)