#!/usr/bin/python # -*- coding: utf8 -*- import numpy as np import pandas as pd from statsmodels.tsa.arima_model import ARIMA as stats_arima import scipy.stats as st from pyFTS import fts from pyFTS.common import SortedCollection class ARIMA(fts.FTS): """ Façade for statsmodels.tsa.arima_model """ def __init__(self, name, **kwargs): super(ARIMA, self).__init__(1, "ARIMA"+name) self.name = "ARIMA" self.detail = "Auto Regressive Integrated Moving Average" self.is_high_order = True self.has_point_forecasting = True self.has_interval_forecasting = True self.model = None self.model_fit = None self.trained_data = None self.p = 1 self.d = 0 self.q = 0 self.benchmark_only = True self.min_order = 1 self.alpha = kwargs.get("alpha", 0.05) self.shortname += str(self.alpha) def train(self, data, sets, order, parameters=None): self.p = order[0] self.d = order[1] self.q = order[2] self.order = self.p + self.q self.shortname = "ARIMA(" + str(self.p) + "," + str(self.d) + "," + str(self.q) + ") - " + str(self.alpha) data = self.doTransformations(data, updateUoD=True) old_fit = self.model_fit try: self.model = stats_arima(data, order=(self.p, self.d, self.q)) self.model_fit = self.model.fit(disp=0) print(np.sqrt(self.model_fit.sigma2)) except Exception as ex: print(ex) self.model_fit = None def ar(self, data): return data.dot(self.model_fit.arparams) def ma(self, data): return data.dot(self.model_fit.maparams) def forecast(self, data, **kwargs): if self.model_fit is None: return np.nan ndata = np.array(self.doTransformations(data)) l = len(ndata) ret = [] if self.d == 0: ar = np.array([self.ar(ndata[k - self.p: k]) for k in np.arange(self.p, l+1)]) #+1 to forecast one step ahead given all available lags else: ar = np.array([ndata[k] + self.ar(ndata[k - self.p: k]) for k in np.arange(self.p, l+1)]) if self.q > 0: residuals = np.array([ndata[k] - ar[k - self.p] for k in np.arange(self.p, l)]) ma = np.array([self.ma(residuals[k - self.q: k]) for k in np.arange(self.q, len(residuals)+1)]) ret = ar[self.q:] + ma else: ret = ar ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]]) return ret def forecastInterval(self, data, **kwargs): if self.model_fit is None: return np.nan sigma = np.sqrt(self.model_fit.sigma2) #ndata = np.array(self.doTransformations(data)) l = len(data) ret = [] for k in np.arange(self.order, l+1): tmp = [] sample = [data[i] for i in np.arange(k - self.order, k)] mean = self.forecast(sample) if isinstance(mean,(list, np.ndarray)): mean = mean[0] tmp.append(mean + st.norm.ppf(self.alpha) * sigma) tmp.append(mean + st.norm.ppf(1 - self.alpha) * sigma) ret.append(tmp) #ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]], point_to_interval=True) return ret def forecastAheadInterval(self, data, steps, **kwargs): if self.model_fit is None: return np.nan smoothing = kwargs.get("smoothing",0.5) sigma = np.sqrt(self.model_fit.sigma2) ndata = np.array(self.doTransformations(data)) l = len(ndata) nmeans = self.forecastAhead(ndata, steps, **kwargs) ret = [] for k in np.arange(0, steps): tmp = [] hsigma = (1 + k*smoothing)*sigma tmp.append(nmeans[k] + st.norm.ppf(self.alpha) * hsigma) tmp.append(nmeans[k] + st.norm.ppf(1 - self.alpha) * hsigma) ret.append(tmp) ret = self.doInverseTransformations(ret, params=[[data[-1] for a in np.arange(0,steps)]], interval=True) return ret def forecastAheadDistribution(self, data, steps, **kwargs): smoothing = kwargs.get("smoothing", 0.5) sigma = np.sqrt(self.model_fit.sigma2) ndata = np.array(self.doTransformations(data)) l = len(ndata) percentile_size = (self.original_max - self.original_min)/100 resolution = kwargs.get('resolution', percentile_size) grid = self.get_empty_grid(self.original_min, self.original_max, resolution) index = SortedCollection.SortedCollection(iterable=grid.keys()) ret = [] nmeans = self.forecastAhead(ndata, steps, **kwargs) for k in np.arange(0, steps): grid = self.get_empty_grid(self.original_min, self.original_max, resolution) for alpha in np.arange(0.05, 0.5, 0.05): tmp = [] hsigma = (1 + k * smoothing) * sigma tmp.append(nmeans[k] + st.norm.ppf(alpha) * hsigma) tmp.append(nmeans[k] + st.norm.ppf(1 - alpha) * hsigma) grid = self.gridCount(grid, resolution, index, tmp) tmp = np.array([grid[i] for i in sorted(grid)]) ret.append(tmp / sum(tmp)) grid = self.get_empty_grid(self.original_min, self.original_max, resolution) df = pd.DataFrame(ret, columns=sorted(grid)) return df