import numpy as np from pyFTS import * class SeasonalFLRG(fts.FTS): def __init__(self,seasonality): self.LHS = seasonality self.RHS = [] def append(self,c): self.RHS.append(c) def __str__(self): tmp = str(self.LHS) + " -> " tmp2 = "" for c in sorted(self.RHS, key=lambda s: s.name): if len(tmp2) > 0: tmp2 = tmp2 + "," tmp2 = tmp2 + c.name return tmp + tmp2 class SeasonalFTS(fts.FTS): def __init__(self,name): super(SeasonalFTS, self).__init__(1,name) self.seasonality = 1 def generateFLRG(self, flrs): flrgs = [] season = 1 for flr in flrs: if len(flrgs) < self.seasonality: flrgs.append(SeasonalFLRG(season)) flrgs[season].append(flr.RHS) season = (season + 1) % (self.seasonality + 1) if season == 0: season = 1 return (flrgs) def train(self, data, sets, seasonality): self.sets = sets self.seasonality = seasonality tmpdata = common.fuzzySeries(data,sets) flrs = common.generateRecurrentFLRs(tmpdata) self.flrgs = self.generateFLRG(flrs) def forecast(self,data): ndata = np.array(data) l = len(ndata) ret = [] for k in np.arange(1,l): flrg = self.flrgs[ data[k] ] mp = self.getMidpoints(flrg) ret.append(sum(mp)/len(mp)) return ret