pyFTS.common.transformations package¶
Module contents¶
Submodules¶
pyFTS.common.transformations.adapativeexpectation module¶
pyFTS.common.transformations.boxcox module¶
-
class
pyFTS.common.transformations.boxcox.
BoxCox
(plambda)[source]¶ Bases:
pyFTS.common.transformations.transformation.Transformation
Box-Cox power transformation
y’(t) = log( y(t) ) y(t) = exp( y’(t) )
-
apply
(data, param=None, **kwargs)[source]¶ Apply the transformation on input data
- Parameters
data – input data
param –
kwargs –
- Returns
numpy array with transformed data
-
inverse
(data, param=None, **kwargs)[source]¶ - Parameters
data – transformed data
param –
kwargs –
- Returns
numpy array with inverse transformed data
-
property
parameters
¶
-
pyFTS.common.transformations.differential module¶
-
class
pyFTS.common.transformations.differential.
Differential
(lag)[source]¶ Bases:
pyFTS.common.transformations.transformation.Transformation
Differentiation data transform
y’(t) = y(t) - y(t-1) y(t) = y(t-1) + y’(t)
-
apply
(data, param=None, **kwargs)[source]¶ Apply the transformation on input data
- Parameters
data – input data
param –
kwargs –
- Returns
numpy array with transformed data
-
inverse
(data, param, **kwargs)[source]¶ - Parameters
data – transformed data
param –
kwargs –
- Returns
numpy array with inverse transformed data
-
property
parameters
¶
-
pyFTS.common.transformations.normalization module¶
-
class
pyFTS.common.transformations.normalization.
Normalization
(**kwargs)[source]¶ Bases:
pyFTS.common.transformations.transformation.Transformation
-
apply
(data, param=None, **kwargs)[source]¶ Apply the transformation on input data
- Parameters
data – input data
param –
kwargs –
- Returns
numpy array with transformed data
-
pyFTS.common.transformations.roi module¶
-
class
pyFTS.common.transformations.roi.
ROI
(**kwargs)[source]¶ Bases:
pyFTS.common.transformations.transformation.Transformation
Return of Investment (ROI) transformation. Retrieved from Sadaei and Lee (2014) - Multilayer Stock Forecasting Model Using Fuzzy Time Series
y’(t) = ( y(t) - y(t-1) ) / y(t-1) y(t) = ( y(t-1) * y’(t) ) + y(t-1)
pyFTS.common.transformations.scale module¶
-
class
pyFTS.common.transformations.scale.
Scale
(min=0, max=1)[source]¶ Bases:
pyFTS.common.transformations.transformation.Transformation
Scale data inside a interval [min, max]
-
apply
(data, param=None, **kwargs)[source]¶ Apply the transformation on input data
- Parameters
data – input data
param –
kwargs –
- Returns
numpy array with transformed data
-
inverse
(data, param, **kwargs)[source]¶ - Parameters
data – transformed data
param –
kwargs –
- Returns
numpy array with inverse transformed data
-
property
parameters
¶
-
pyFTS.common.transformations.smoothing module¶
-
class
pyFTS.common.transformations.smoothing.
ExponentialSmoothing
(**kwargs)[source]¶ Bases:
pyFTS.common.transformations.transformation.Transformation
-
class
pyFTS.common.transformations.smoothing.
MovingAverage
(**kwargs)[source]¶ Bases:
pyFTS.common.transformations.transformation.Transformation
pyFTS.common.transformations.som module¶
Kohonen Self Organizing Maps for Fuzzy Time Series
-
class
pyFTS.common.transformations.som.
SOMTransformation
(grid_dimension: Tuple, **kwargs)[source]¶ Bases:
pyFTS.common.transformations.transformation.Transformation
-
apply
(data: pandas.core.frame.DataFrame, param=None, **kwargs)[source]¶ Transform a M-dimensional dataset into a 3-dimensional dataset, where one dimension is the endogen variable If endogen_variable = None, the last column will be the endogen_variable. Args:
data (pd.DataFrame): M-Dimensional dataset endogen_variable (str): column of dataset names (Tuple): names for new columns created by SOM Transformation. param: **kwargs: params of SOM’s train process
percentage_train (float). Percentage of dataset that will be used for train SOM network. default: 0.7 leaning_rate (float): leaning rate of SOM network. default: 0.01 epochs: epochs of SOM network. default: 10000
Returns:
-
pyFTS.common.transformations.transformation module¶
-
class
pyFTS.common.transformations.transformation.
Transformation
(**kwargs)[source]¶ Bases:
object
Data transformation used on pre and post processing of the FTS
-
apply
(data, param, **kwargs)[source]¶ Apply the transformation on input data
- Parameters
data – input data
param –
kwargs –
- Returns
numpy array with transformed data
-
inverse
(data, param, **kwargs)[source]¶ - Parameters
data – transformed data
param –
kwargs –
- Returns
numpy array with inverse transformed data
-
is_multivariate
¶ detemine if this transformation can be applied to multivariate data
-
pyFTS.common.transformations.trend module¶
-
class
pyFTS.common.transformations.trend.
LinearTrend
(**kwargs)[source]¶ Bases:
pyFTS.common.transformations.transformation.Transformation
Linear Trend. Estimate
y’(t) = y(t) - (a*t+b) y(t) = y’(t) + (a*t+b)
-
apply
(data, param=None, **kwargs)[source]¶ Apply the transformation on input data
- Parameters
data – input data
param –
kwargs –
- Returns
numpy array with transformed data
-
data_field
¶ The Pandas Dataframe column to use as data
-
datetime_mask
¶ The Pandas Dataframe mask for datetime indexes
-
index_field
¶ The Pandas Dataframe column to use as index
-
index_type
¶ The type of the time index used to train the regression coefficients. Available types are: field, datetime
-
inverse
(data, param=None, **kwargs)[source]¶ - Parameters
data – transformed data
param –
kwargs –
- Returns
numpy array with inverse transformed data
-
model
¶ Regression model
-