""" Simple First Order Seasonal Fuzzy Time Series implementation of Song (1999) based of Conventional FTS by Chen (1996) Q. Song, “Seasonal forecasting in fuzzy time series,” Fuzzy sets Syst., vol. 107, pp. 235–236, 1999. S.-M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets Syst., vol. 81, no. 3, pp. 311–319, 1996. """ import numpy as np from pyFTS.common import FuzzySet,FLR from pyFTS import fts class SeasonalFLRG(FLR.FLR): """First Order Seasonal Fuzzy Logical Relationship Group""" def __init__(self, seasonality): super(SeasonalFLRG, self).__init__(None,None) self.LHS = seasonality self.RHS = [] def append(self, c): self.RHS.append(c) def __str__(self): tmp = str(self.LHS) + " -> " tmp2 = "" for c in sorted(self.RHS, key=lambda s: s.name): if len(tmp2) > 0: tmp2 = tmp2 + "," tmp2 = tmp2 + c.name return tmp + tmp2 def __len__(self): return len(self.RHS) class SeasonalFTS(fts.FTS): """First Order Seasonal Fuzzy Time Series""" def __init__(self, name, **kwargs): super(SeasonalFTS, self).__init__(1, "SFTS") self.name = "Seasonal FTS" self.detail = "Chen" self.seasonality = 1 self.has_seasonality = True self.has_point_forecasting = True self.is_high_order = False def generateFLRG(self, flrs): flrgs = [] season = 1 for flr in flrs: if len(flrgs) < self.seasonality: flrgs.append(SeasonalFLRG(season)) #print(season) flrgs[season-1].append(flr.RHS) season = (season + 1) % (self.seasonality + 1) if season == 0: season = 1 return (flrgs) def train(self, data, sets, order=1,parameters=12): self.sets = sets self.seasonality = parameters ndata = self.doTransformations(data) tmpdata = FuzzySet.fuzzySeries(ndata, sets) flrs = FLR.generateRecurrentFLRs(tmpdata) self.flrgs = self.generateFLRG(flrs) def forecast(self, data, **kwargs): ndata = np.array(self.doTransformations(data)) l = len(ndata) ret = [] for k in np.arange(1, l): #flrg = self.flrgs[ndata[k]] season = (k + 1) % (self.seasonality + 1) #print(season) flrg = self.flrgs[season-1] mp = self.getMidpoints(flrg) ret.append(sum(mp) / len(mp)) ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]]) return ret