import numpy as np from pyFTS import * class SeasonalFLRG(fts.FTS): def __init__(self,seasonality): self.LHS = seasonality self.RHS = [] def append(self,c): self.RHS.append(c) def __str__(self): tmp = self.LHS + " -> " tmp2 = "" for c in self.RHS: if len(tmp2) > 0: tmp2 = tmp2 + "," tmp2 = tmp2 + c return tmp + tmp2 class SeasonalFTS(fts.FTS): def __init__(self,name): super(SeasonalFTS, self).__init__(1,name) def forecast(self,data): actual = self.fuzzy(data) if actual["fuzzyset"] not in self.flrgs: return self.sets[actual["fuzzyset"]].centroid flrg = self.flrgs[actual["fuzzyset"]] mi = np.array([self.sets[s].centroid for s in flrg.RHS]) return mi.dot( flrg.weights() ) def train(self, data, sets): last = {"fuzzyset":"", "membership":0.0} actual = {"fuzzyset":"", "membership":0.0} for s in sets: self.sets[s.name] = s self.flrgs = {} count = 1 for inst in data: actual = self.fuzzy(inst) if count > self.order: if last["fuzzyset"] not in self.flrgs: self.flrgs[last["fuzzyset"]] = SeasonalFLRG(last["fuzzyset"]) self.flrgs[last["fuzzyset"]].append(actual["fuzzyset"]) count = count + 1 last = actual