Source code for pyFTS.models.hofts

"""
High Order FTS

Severiano, S. A. Jr; Silva, P. C. L.; Sadaei, H. J.; GuimarĂ£es, F. G. Very Short-term Solar Forecasting
using Fuzzy Time Series. 2017 IEEE International Conference on Fuzzy Systems. DOI10.1109/FUZZ-IEEE.2017.8015732
"""

import numpy as np
from pyFTS.common import FuzzySet, FLR, fts, flrg, tree

[docs]class HighOrderFLRG(flrg.FLRG): """Conventional High Order Fuzzy Logical Relationship Group""" def __init__(self, order, **kwargs): super(HighOrderFLRG, self).__init__(order, **kwargs) self.LHS = [] self.RHS = {} self.strlhs = ""
[docs] def append_rhs(self, c, **kwargs): if c not in self.RHS: self.RHS[c] = c
[docs] def append_lhs(self, c): self.LHS.append(c)
def __str__(self): tmp = "" for c in sorted(self.RHS): if len(tmp) > 0: tmp = tmp + "," tmp = tmp + c return self.get_key() + " -> " + tmp def __len__(self): return len(self.RHS)
[docs]class HighOrderFTS(fts.FTS): """Conventional High Order Fuzzy Time Series""" def __init__(self, **kwargs): super(HighOrderFTS, self).__init__(**kwargs) self.name = "High Order FTS" self.shortname = "HOFTS" self.detail = "Severiano, Silva, Sadaei and GuimarĂ£es" self.is_high_order = True self.min_order = 1 self.order= kwargs.get("order", 2) self.lags = kwargs.get("lags", None) self.configure_lags(**kwargs)
[docs] def configure_lags(self, **kwargs): if "order" in kwargs: self.order = kwargs.get("order", 2) if "lags" in kwargs: self.lags = kwargs.get("lags", None) if self.lags is not None: self.max_lag = max(self.lags) else: self.max_lag = self.order self.lags = np.arange(1, self.order+1)
[docs] def generate_lhs_flrg(self, sample): lags = {} flrgs = [] for ct, o in enumerate(self.lags): lhs = [key for key in self.partitioner.ordered_sets if self.sets[key].membership(sample[o-1]) > self.alpha_cut] lags[ct] = lhs root = tree.FLRGTreeNode(None) tree.build_tree_without_order(root, lags, 0) # Trace the possible paths for p in root.paths(): flrg = HighOrderFLRG(self.order) path = list(reversed(list(filter(None.__ne__, p)))) for lhs in path: flrg.append_lhs(lhs) flrgs.append(flrg) return flrgs
[docs] def generate_flrg(self, data): l = len(data) for k in np.arange(self.max_lag, l): if self.dump: print("FLR: " + str(k)) sample = data[k - self.max_lag: k] rhs = [key for key in self.partitioner.ordered_sets if self.sets[key].membership(data[k]) > self.alpha_cut] flrgs = self.generate_lhs_flrg(sample) for flrg in flrgs: if flrg.get_key() not in self.flrgs: self.flrgs[flrg.get_key()] = flrg; for st in rhs: self.flrgs[flrg.get_key()].append_rhs(st)
[docs] def train(self, data, **kwargs): self.configure_lags(**kwargs) self.generate_flrg(data)
[docs] def forecast(self, ndata, **kwargs): ret = [] l = len(ndata) if l <= self.max_lag: return ndata for k in np.arange(self.max_lag, l+1): flrgs = self.generate_lhs_flrg(ndata[k - self.max_lag: k]) tmp = [] for flrg in flrgs: if flrg.get_key() not in self.flrgs: if len(flrg.LHS) > 0: tmp.append(self.sets[flrg.LHS[-1]].centroid) else: flrg = self.flrgs[flrg.get_key()] tmp.append(flrg.get_midpoint(self.sets)) ret.append(np.nanmean(tmp)) return ret