from pyFTS import * class ConventionalFLRG: def __init__(self,LHS): self.LHS = LHS self.RHS = set() def append(self,c): self.RHS.add(c) def __str__(self): tmp = self.LHS + " -> " tmp2 = "" for c in self.RHS: if len(tmp2) > 0: tmp2 = tmp2 + "," tmp2 = tmp2 + c return tmp + tmp2 class ConventionalFTS(fts.FTS): def __init__(self,name): super(ConventionalFTS, self).__init__(1,name) def forecast(self,data): actual = self.fuzzy(data) if actual["fuzzyset"] not in self.flrgs: return self.sets[actual["fuzzyset"]].centroid flrg = self.flrgs[actual["fuzzyset"]] count = 0.0 denom = 0.0 for s in flrg.RHS: denom = denom + self.sets[s].centroid count = count + 1.0 return denom/count def train(self, data, sets): last = {"fuzzyset":"", "membership":0.0} actual = {"fuzzyset":"", "membership":0.0} for s in sets: self.sets[s.name] = s self.flrgs = {} count = 1 for inst in data: actual = self.fuzzy(inst) if count > self.order: if last["fuzzyset"] not in self.flrgs: self.flrgs[last["fuzzyset"]] = ConventionalFLRG(last["fuzzyset"]) self.flrgs[last["fuzzyset"]].append(actual["fuzzyset"]) count = count + 1 last = actual