Source code for pyFTS.models.seasonal.partitioner

from pyFTS.common import Membership, FuzzySet as FS
from pyFTS.common.Composite import FuzzySet as Composite
from pyFTS.partitioners import partitioner, Grid
from pyFTS.models.seasonal.common import DateTime, FuzzySet, strip_datepart
import numpy as np
import matplotlib.pylab as plt


[docs]class TimeGridPartitioner(partitioner.Partitioner): """Even Length DateTime Grid Partitioner""" def __init__(self, **kwargs): """ Even Length Grid Partitioner :param seasonality: Time granularity, from pyFTS.models.seasonal.common.DateTime :param data: Training data of which the universe of discourse will be extracted. The universe of discourse is the open interval between the minimum and maximum values of the training data. :param npart: The number of universe of discourse partitions, i.e., the number of fuzzy sets that will be created :param func: Fuzzy membership function (pyFTS.common.Membership) """ super(TimeGridPartitioner, self).__init__(name="TimeGrid", preprocess=False, **kwargs) self.season = kwargs.get('seasonality', DateTime.day_of_year) data = kwargs.get('data', None) if self.season == DateTime.year: ndata = [strip_datepart(k, self.season) for k in data] self.min = min(ndata) self.max = max(ndata) else: tmp = (self.season.value / self.partitions) / 2 self.min = tmp self.max = self.season.value + tmp self.sets = self.build(None) if self.ordered_sets is None and self.setnames is not None: self.ordered_sets = self.setnames else: self.ordered_sets = FS.set_ordered(self.sets)
[docs] def build(self, data): sets = {} kwargs = {'variable': self.variable} if self.season == DateTime.year: dlen = (self.max - self.min) partlen = dlen / self.partitions else: partlen = self.season.value / self.partitions pl2 = partlen / 2 count = 0 for c in np.arange(self.min, self.max, partlen): set_name = self.get_name(count) if self.membership_function == Membership.trimf: if c == self.min: tmp = Composite(set_name, superset=True) tmp.append_set(FuzzySet(self.season, set_name, Membership.trimf, [self.season.value - pl2, self.season.value, self.season.value + 0.0000001], self.season.value, alpha=.5, **kwargs)) tmp.append_set(FuzzySet(self.season, set_name, Membership.trimf, [c - partlen, c, c + partlen], c, **kwargs)) tmp.centroid = c sets[set_name] = tmp elif c == self.max - partlen: tmp = Composite(set_name, superset=True) tmp.append_set(FuzzySet(self.season, set_name, Membership.trimf, [0.0000001, 0.0, pl2], 0.0, alpha=.5, **kwargs)) tmp.append_set(FuzzySet(self.season, set_name, Membership.trimf, [c - partlen, c, c + partlen], c, **kwargs)) tmp.centroid = c sets[set_name] = tmp else: sets[set_name] = FuzzySet(self.season, set_name, Membership.trimf, [c - partlen, c, c + partlen], c, **kwargs) elif self.membership_function == Membership.gaussmf: sets[set_name] = FuzzySet(self.season, set_name, Membership.gaussmf, [c, partlen / 3], c, **kwargs) elif self.membership_function == Membership.trapmf: q = partlen / 4 if c == self.min: tmp = Composite(set_name, superset=True) tmp.append_set(FuzzySet(self.season, set_name, Membership.trimf, [self.season.value - pl2, self.season.value, self.season.value + 0.0000001], 0, **kwargs)) tmp.append_set(FuzzySet(self.season, set_name, Membership.trapmf, [c - partlen, c - q, c + q, c + partlen], c, **kwargs)) tmp.centroid = c sets[set_name] = tmp else: sets[set_name] = FuzzySet(self.season, set_name, Membership.trapmf, [c - partlen, c - q, c + q, c + partlen], c, **kwargs) count += 1 self.min = 0 return sets
[docs] def plot(self, ax): """ Plot the :param ax: :return: """ ax.set_title(self.name) ax.set_ylim([0, 1]) ax.set_xlim([0, self.season.value]) ticks = [] x = [] for key in self.sets.keys(): s = self.sets[key] if s.type == 'composite': for ss in s.sets: self.plot_set(ax, ss) else: self.plot_set(ax, s) ticks.append(str(round(s.centroid, 0)) + '\n' + s.name) x.append(s.centroid) ax.xaxis.set_ticklabels(ticks) ax.xaxis.set_ticks(x)