Source code for pyFTS.common.fts

import numpy as np
import pandas as pd
from pyFTS.common import FuzzySet, SortedCollection, tree, Util


[docs]class FTS(object): """ Fuzzy Time Series object model """ def __init__(self, **kwargs): """ Create a Fuzzy Time Series model """ self.flrgs = {} """The list of Fuzzy Logical Relationship Groups - FLRG""" self.order = kwargs.get('order',1) """A integer with the model order (number of past lags are used on forecasting)""" self.shortname = kwargs.get('name',"") """A string with a short name or alias for the model""" self.name = kwargs.get('name',"") """A string with the model name""" self.detail = kwargs.get('name',"") """A string with the model detailed information""" self.is_wrapper = False """Indicates that this model is a wrapper for other(s) method(s)""" self.is_high_order = False """A boolean value indicating if the model support orders greater than 1, default: False""" self.min_order = 1 """In high order models, this integer value indicates the minimal order supported for the model, default: 1""" self.has_seasonality = False """A boolean value indicating if the model supports seasonal indexers, default: False""" self.has_point_forecasting = True """A boolean value indicating if the model supports point forecasting, default: True""" self.has_interval_forecasting = False """A boolean value indicating if the model supports interval forecasting, default: False""" self.has_probability_forecasting = False """A boolean value indicating if the model support probabilistic forecasting, default: False""" self.is_multivariate = False """A boolean value indicating if the model support multivariate time series (Pandas DataFrame), default: False""" self.is_clustered = False """A boolean value indicating if the model support multivariate time series (Pandas DataFrame), but works like a monovariate method, default: False""" self.dump = False self.transformations = [] """A list with the data transformations (common.Transformations) applied on model pre and post processing, default: []""" self.transformations_param = [] """A list with the specific parameters for each data transformation""" self.original_max = 0 """A float with the upper limit of the Universe of Discourse, the maximal value found on training data""" self.original_min = 0 """A float with the lower limit of the Universe of Discourse, the minimal value found on training data""" self.partitioner = kwargs.get("partitioner", None) """A pyFTS.partitioners.Partitioner object with the Universe of Discourse partitioner used on the model. This is a mandatory dependecy. """ if self.partitioner != None: self.sets = self.partitioner.sets self.auto_update = False """A boolean value indicating that model is incremental""" self.benchmark_only = False """A boolean value indicating a façade for external (non-FTS) model used on benchmarks or ensembles.""" self.indexer = kwargs.get("indexer", None) """An pyFTS.models.seasonal.Indexer object for indexing the time series data""" self.uod_clip = kwargs.get("uod_clip", True) """Flag indicating if the test data will be clipped inside the training Universe of Discourse""" self.alpha_cut = kwargs.get("alpha_cut", 0.0) """A float with the minimal membership to be considered on fuzzyfication process""" self.lags = kwargs.get("lags", None) """The list of lag indexes for high order models""" self.max_lag = self.order """A integer indicating the largest lag used by the model. This value also indicates the minimum number of past lags needed to forecast a single step ahead""" self.log = pd.DataFrame([],columns=["Datetime","Operation","Value"]) """""" self.is_time_variant = False """A boolean value indicating if this model is time variant""" self.standard_horizon = kwargs.get("standard_horizon", 1) """Standard forecasting horizon (Default: 1)"""
[docs] def fuzzy(self, data): """ Fuzzify a data point :param data: data point :return: maximum membership fuzzy set """ best = {"fuzzyset": "", "membership": 0.0} for f in self.partitioner.sets: fset = self.partitioner.sets[f] if best["membership"] <= fset.membership(data): best["fuzzyset"] = fset.name best["membership"] = fset.membership(data) return best
[docs] def clip_uod(self, ndata): if self.uod_clip and self.partitioner is not None: ndata = np.clip(ndata, self.partitioner.min, self.partitioner.max) elif self.uod_clip: ndata = np.clip(ndata, self.original_min, self.original_max) return ndata
[docs] def predict(self, data, **kwargs): """ Forecast using trained model :param data: time series with minimal length to the order of the model :keyword type: the forecasting type, one of these values: point(default), interval, distribution or multivariate. :keyword steps_ahead: The forecasting path H, i. e., tell the model to forecast from t+1 to t+H. :keyword step_to: The forecasting step H, i. e., tell the model to forecast to t+H for each input sample :keyword start_at: in the multi step forecasting, the index of the data where to start forecasting (default value: 0) :keyword distributed: boolean, indicate if the forecasting procedure will be distributed in a dispy cluster (default value: False) :keyword nodes: a list with the dispy cluster nodes addresses :keyword explain: try to explain, step by step, the one-step-ahead point forecasting result given the input data. (default value: False) :keyword generators: for multivariate methods on multi step ahead forecasting, generators is a dict where the keys are the dataframe columun names (except the target_variable) and the values are lambda functions that accept one value (the actual value of the variable) and return the next value or trained FTS models that accept the actual values and forecast new ones. :return: a numpy array with the forecasted data """ import copy kw = copy.deepcopy(kwargs) if self.is_multivariate: ndata = data else: ndata = self.apply_transformations(data) ndata = self.clip_uod(ndata) if 'distributed' in kw: distributed = kw.pop('distributed') else: distributed = False if 'type' in kw: type = kw.pop("type") else: type = 'point' if distributed is None or distributed == False: steps_ahead = kw.get("steps_ahead", None) step_to = kw.get("step_to", None) if (steps_ahead == None and step_to == None) or (steps_ahead == 1 or step_to ==1): if type == 'point': ret = self.forecast(ndata, **kw) elif type == 'interval': ret = self.forecast_interval(ndata, **kw) elif type == 'distribution': ret = self.forecast_distribution(ndata, **kw) elif type == 'multivariate': ret = self.forecast_multivariate(ndata, **kw) elif step_to == None and steps_ahead > 1: if type == 'point': ret = self.forecast_ahead(ndata, steps_ahead, **kw) elif type == 'interval': ret = self.forecast_ahead_interval(ndata, steps_ahead, **kw) elif type == 'distribution': ret = self.forecast_ahead_distribution(ndata, steps_ahead, **kw) elif type == 'multivariate': ret = self.forecast_ahead_multivariate(ndata, steps_ahead, **kw) elif step_to > 1: if type == 'point': ret = self.forecast_step(ndata, step_to, **kw) else: raise NotImplementedError('This model only perform point step ahead forecasts!') if not ['point', 'interval', 'distribution', 'multivariate'].__contains__(type): raise ValueError('The argument \'type\' has an unknown value.') else: if distributed == 'dispy': from pyFTS.distributed import dispy nodes = kw.pop("nodes", ['127.0.0.1']) num_batches = kw.pop('num_batches', 10) ret = dispy.distributed_predict(self, kw, nodes, ndata, num_batches, **kw) elif distributed == 'spark': from pyFTS.distributed import spark ret = spark.distributed_predict(data=ndata, model=self, **kw) if not self.is_multivariate: kw['type'] = type ret = self.apply_inverse_transformations(ret, params=[data[self.max_lag - 1:]], **kw) if 'statistics' in kw: kwargs['statistics'] = kw['statistics'] return ret
[docs] def forecast(self, data, **kwargs): """ Point forecast one step ahead :param data: time series data with the minimal length equal to the max_lag of the model :param kwargs: model specific parameters :return: a list with the forecasted values """ raise NotImplementedError('This model do not perform one step ahead point forecasts!')
[docs] def forecast_interval(self, data, **kwargs): """ Interval forecast one step ahead :param data: time series data with the minimal length equal to the max_lag of the model :param kwargs: model specific parameters :return: a list with the prediction intervals """ raise NotImplementedError('This model do not perform one step ahead interval forecasts!')
[docs] def forecast_distribution(self, data, **kwargs): """ Probabilistic forecast one step ahead :param data: time series data with the minimal length equal to the max_lag of the model :param kwargs: model specific parameters :return: a list with probabilistic.ProbabilityDistribution objects representing the forecasted Probability Distributions """ raise NotImplementedError('This model do not perform one step ahead distribution forecasts!')
[docs] def forecast_multivariate(self, data, **kwargs): """ Multivariate forecast one step ahead :param data: Pandas dataframe with one column for each variable and with the minimal length equal to the max_lag of the model :param kwargs: model specific parameters :return: a Pandas Dataframe object representing the forecasted values for each variable """ raise NotImplementedError('This model do not perform one step ahead multivariate forecasts!')
[docs] def forecast_ahead(self, data, steps, **kwargs): """ Point forecast from 1 to H steps ahead, where H is given by the steps parameter :param data: time series data with the minimal length equal to the max_lag of the model :param steps: the number of steps ahead to forecast (default: 1) :keyword start_at: in the multi step forecasting, the index of the data where to start forecasting (default: 0) :return: a list with the forecasted values """ if len(data) < self.max_lag: return data if isinstance(data, np.ndarray): data = data.tolist() start = kwargs.get('start_at',0) ret = data[:start+self.max_lag] for k in np.arange(start+self.max_lag, steps+start+self.max_lag): tmp = self.forecast(ret[k-self.max_lag:k], **kwargs) if isinstance(tmp,(list, np.ndarray)): tmp = tmp[-1] ret.append(tmp) data.append(tmp) return ret[-steps:]
[docs] def forecast_ahead_interval(self, data, steps, **kwargs): """ Interval forecast from 1 to H steps ahead, where H is given by the steps parameter :param data: time series data with the minimal length equal to the max_lag of the model :param steps: the number of steps ahead to forecast :keyword start_at: in the multi step forecasting, the index of the data where to start forecasting (default: 0) :return: a list with the forecasted intervals """ raise NotImplementedError('This model do not perform multi step ahead interval forecasts!')
[docs] def forecast_ahead_distribution(self, data, steps, **kwargs): """ Probabilistic forecast from 1 to H steps ahead, where H is given by the steps parameter :param data: time series data with the minimal length equal to the max_lag of the model :param steps: the number of steps ahead to forecast :keyword start_at: in the multi step forecasting, the index of the data where to start forecasting (default: 0) :return: a list with the forecasted Probability Distributions """ raise NotImplementedError('This model do not perform multi step ahead distribution forecasts!')
[docs] def forecast_ahead_multivariate(self, data, steps, **kwargs): """ Multivariate forecast n step ahead :param data: Pandas dataframe with one column for each variable and with the minimal length equal to the max_lag of the model :param steps: the number of steps ahead to forecast :keyword start_at: in the multi step forecasting, the index of the data where to start forecasting (default: 0) :return: a Pandas Dataframe object representing the forecasted values for each variable """ raise NotImplementedError('This model do not perform one step ahead multivariate forecasts!')
[docs] def forecast_step(self, data, step, **kwargs): """ Point forecast for H steps ahead, where H is given by the step parameter :param data: time series data with the minimal length equal to the max_lag of the model :param step: the forecasting horizon (default: 1) :keyword start_at: in the multi step forecasting, the index of the data where to start forecasting (default: 0) :return: a list with the forecasted values """ l = len(data) ret = [] if l < self.max_lag: return data if isinstance(data, np.ndarray): data = data.tolist() start = kwargs.get('start_at',0) for k in np.arange(start+self.max_lag, l): sample = data[k-self.max_lag:k] tmp = self.forecast_ahead(sample, step, **kwargs) if isinstance(tmp,(list, np.ndarray)): tmp = tmp[-1] ret.append(tmp) return ret
[docs] def train(self, data, **kwargs): """ Method specific parameter fitting :param data: training time series data :param kwargs: Method specific parameters """ pass
[docs] def fit(self, ndata, **kwargs): """ Fit the model's parameters based on the training data. :param ndata: training time series data :param kwargs: :keyword num_batches: split the training data in num_batches to save memory during the training process :keyword save_model: save final model on disk :keyword batch_save: save the model between each batch :keyword file_path: path to save the model :keyword distributed: boolean, indicate if the training procedure will be distributed in a dispy cluster :keyword nodes: a list with the dispy cluster nodes addresses """ import datetime, copy kw = copy.deepcopy(kwargs) if self.is_multivariate: data = ndata else: data = self.apply_transformations(ndata) self.original_min = np.nanmin(data) self.original_max = np.nanmax(data) if 'partitioner' in kw: self.partitioner = kw.pop('partitioner') if not self.is_multivariate and not self.is_wrapper and not self.benchmark_only: if self.partitioner is None: raise Exception("Fuzzy sets were not provided for the model. Use 'partitioner' parameter. ") if 'order' in kw: self.order = kw.pop('order') dump = kw.get('dump', None) num_batches = kw.pop('num_batches', None) save = kw.get('save_model', False) # save model on disk batch_save = kw.get('batch_save', False) #save model between batches file_path = kw.get('file_path', None) distributed = kw.pop('distributed', False) if distributed is not None and distributed: if num_batches is None: num_batches = 10 if distributed == 'dispy': from pyFTS.distributed import dispy nodes = kw.pop('nodes', False) train_method = kwargs.get('train_method', dispy.simple_model_train) dispy.distributed_train(self, train_method, nodes, type(self), data, num_batches, {}, **kw) elif distributed == 'spark': from pyFTS.distributed import spark url = kwargs.get('url', 'spark://127.0.0.1:7077') app = kwargs.get('app', 'pyFTS') spark.distributed_train(self, data, url=url, app=app) else: if dump == 'time': print("[{0: %H:%M:%S}] Start training".format(datetime.datetime.now())) if num_batches is not None and not self.is_wrapper: n = len(data) batch_size = int(n / num_batches) bcount = 1 rng = range(self.order, n, batch_size) if dump == 'tqdm': from tqdm import tqdm rng = tqdm(rng) for ct in rng: if dump == 'time': print("[{0: %H:%M:%S}] Starting batch ".format(datetime.datetime.now()) + str(bcount)) if self.is_multivariate: mdata = data.iloc[ct - self.order:ct + batch_size] else: mdata = data[ct - self.order : ct + batch_size] self.train(mdata, **kw) if batch_save: Util.persist_obj(self,file_path) if dump == 'time': print("[{0: %H:%M:%S}] Finish batch ".format(datetime.datetime.now()) + str(bcount)) bcount += 1 else: self.train(data, **kw) if dump == 'time': print("[{0: %H:%M:%S}] Finish training".format(datetime.datetime.now())) if save: Util.persist_obj(self, file_path)
[docs] def clone_parameters(self, model): """ Import the parameters values from other model :param model: a model to clone the parameters """ self.order = model.order self.partitioner = model.partitioner self.lags = model.lags self.shortname = model.shortname self.name = model.name self.detail = model.detail self.is_high_order = model.is_high_order self.min_order = model.min_order self.has_seasonality = model.has_seasonality self.has_point_forecasting = model.has_point_forecasting self.has_interval_forecasting = model.has_interval_forecasting self.has_probability_forecasting = model.has_probability_forecasting self.is_multivariate = model.is_multivariate self.dump = model.dump self.transformations = model.transformations self.transformations_param = model.transformations_param self.original_max = model.original_max self.original_min = model.original_min self.auto_update = model.auto_update self.benchmark_only = model.benchmark_only self.indexer = model.indexer
[docs] def append_rule(self, flrg): """ Append FLRG rule to the model :param flrg: rule :return: """ if flrg.get_key() not in self.flrgs: self.flrgs[flrg.get_key()] = flrg else: if isinstance(flrg.RHS, (list, set)): for k in flrg.RHS: self.flrgs[flrg.get_key()].append_rhs(k) elif isinstance(flrg.RHS, dict): for key, value in flrg.RHS.items(): self.flrgs[flrg.get_key()].append_rhs(key, count=value) else: self.flrgs[flrg.get_key()].append_rhs(flrg.RHS)
[docs] def merge(self, model): """ Merge the FLRG rules from other model :param model: source model :return: """ for key, flrg in model.flrgs.items(): self.append_rule(flrg)
[docs] def append_transformation(self, transformation): if transformation is not None: self.transformations.append(transformation)
[docs] def apply_transformations(self, data, params=None, updateUoD=False, **kwargs): """ Apply the data transformations for data preprocessing :param data: input data :param params: transformation parameters :param updateUoD: :param kwargs: :return: preprocessed data """ ndata = data if updateUoD: if min(data) < 0: self.original_min = min(data) * 1.1 else: self.original_min = min(data) * 0.9 if max(data) > 0: self.original_max = max(data) * 1.1 else: self.original_max = max(data) * 0.9 if len(self.transformations) > 0: if params is None: params = [ None for k in self.transformations] for c, t in enumerate(self.transformations, start=0): ndata = t.apply(ndata, params[c], ) return ndata
[docs] def apply_inverse_transformations(self, data, params=None, **kwargs): """ Apply the data transformations for data postprocessing :param data: input data :param params: transformation parameters :param updateUoD: :param kwargs: :return: postprocessed data """ if len(self.transformations) > 0: if params is None: params = [None for k in self.transformations] for c, t in enumerate(reversed(self.transformations), start=0): ndata = t.inverse(data, params[c], **kwargs) return ndata else: return data
[docs] def get_UoD(self): """ Returns the interval of the known bounds of the universe of discourse (UoD), i. e., the known minimum and maximum values of the time series. :return: A set with the lower and the upper bounds of the UoD """ if self.partitioner is not None: return (self.partitioner.min, self.partitioner.max) else: return (self.original_min, self.original_max)
[docs] def offset(self): """ Returns the number of lags to skip in the input test data in order to synchronize it with the forecasted values given by the predict function. This is necessary due to the order of the model, among other parameters. :return: An integer with the number of lags to skip """ if self.is_high_order: return self.max_lag else: return 1
def __str__(self): """ String representation of the model :return: a string containing the name of the model and the learned rules (if the model was already trained) """ tmp = self.name + ":\n" if self.partitioner.type == 'common': for r in sorted(self.flrgs, key=lambda key: self.flrgs[key].get_midpoint(self.partitioner.sets)): tmp = "{0}{1}\n".format(tmp, str(self.flrgs[r])) else: for r in self.flrgs: tmp = "{0}{1}\n".format(tmp, str(self.flrgs[r])) return tmp def __len__(self): """ The length (number of rules) of the model :return: number of rules """ return len(self.flrgs)
[docs] def len_total(self): """ Total length of the model, adding the number of terms in all rules :return: """ return sum([len(k) for k in self.flrgs])
[docs] def reset_calculated_values(self): """ Reset all pre-calculated values on the FLRG's :return: """ for flrg in self.flrgs.keys(): self.flrgs[flrg].reset_calculated_values()
[docs] def append_log(self,operation, value): pass