#!/usr/bin/python # -*- coding: utf8 -*- import numpy as np import pandas as pd import math from operator import itemgetter from pyFTS.common import FLR, FuzzySet, SortedCollection from pyFTS import hofts, ifts, tree class ProbabilisticWeightedFLRG(hofts.HighOrderFLRG): """High Order Probabilistic Weighted Fuzzy Logical Relationship Group""" def __init__(self, order): super(ProbabilisticWeightedFLRG, self).__init__(order) self.RHS = {} self.frequency_count = 0.0 def appendRHS(self, c): self.frequency_count += 1.0 if c.name in self.RHS: self.RHS[c.name] += 1.0 else: self.RHS[c.name] = 1.0 def appendRHSFuzzy(self, c, mv): self.frequency_count += mv if c.name in self.RHS: self.RHS[c.name] += mv else: self.RHS[c.name] = mv def get_probability(self, c): return self.RHS[c] / self.frequency_count def __str__(self): tmp2 = "" for c in sorted(self.RHS): if len(tmp2) > 0: tmp2 = tmp2 + ", " tmp2 = tmp2 + "(" + str(round(self.RHS[c] / self.frequency_count, 3)) + ")" + c return self.strLHS() + " -> " + tmp2 class ProbabilisticWeightedFTS(ifts.IntervalFTS): """High Order Probabilistic Weighted Fuzzy Time Series""" def __init__(self, name, **kwargs): super(ProbabilisticWeightedFTS, self).__init__(order=1, name=name) self.shortname = "PWFTS " + name self.name = "Probabilistic FTS" self.detail = "Silva, P.; Guimarães, F.; Sadaei, H." self.flrgs = {} self.global_frequency_count = 0 self.has_point_forecasting = True self.has_interval_forecasting = True self.has_probability_forecasting = True self.is_high_order = True self.auto_update = kwargs.get('update',False) def train(self, data, sets, order=1,parameters=None): data = self.doTransformations(data, updateUoD=True) self.order = order self.sets = sets for s in self.sets: self.setsDict[s.name] = s tmpdata = FuzzySet.fuzzySeries(data, sets) flrs = FLR.generateRecurrentFLRs(tmpdata) self.flrgs = self.generateFLRG(flrs) #self.flrgs = self.generateFLRG2(data) def generateFLRG2(self, data): flrgs = {} l = len(data) for k in np.arange(self.order, l): if self.dump: print("FLR: " + str(k)) flrg = ProbabilisticWeightedFLRG(self.order) sample = data[k - self.order: k] mvs = FuzzySet.fuzzyInstances(sample, self.sets) lags = {} for o in np.arange(0, self.order): _sets = [self.sets[kk] for kk in np.arange(0, len(self.sets)) if mvs[o][kk] > 0] lags[o] = _sets root = tree.FLRGTreeNode(None) self.buildTreeWithoutOrder(root, lags, 0) # Trace the possible paths for p in root.paths(): path = list(reversed(list(filter(None.__ne__, p)))) lhs_mv = [] for c, e in enumerate(path, start=0): lhs_mv.append( e.membership( sample[c] ) ) flrg.appendLHS(e) if flrg.strLHS() not in flrgs: flrgs[flrg.strLHS()] = flrg; mv = FuzzySet.fuzzyInstance(data[k], self.sets) rhs_mv = [mv[kk] for kk in np.arange(0, len(self.sets)) if mv[kk] > 0] _sets = [self.sets[kk] for kk in np.arange(0, len(self.sets)) if mv[kk] > 0] for c, e in enumerate(_sets, start=0): flrgs[flrg.strLHS()].appendRHSFuzzy(e,rhs_mv[c]*max(lhs_mv)) self.global_frequency_count += max(lhs_mv) return (flrgs) def generateFLRG(self, flrs): flrgs = {} l = len(flrs) for k in np.arange(self.order, l+1): if self.dump: print("FLR: " + str(k)) flrg = ProbabilisticWeightedFLRG(self.order) for kk in np.arange(k - self.order, k): flrg.appendLHS(flrs[kk].LHS) if self.dump: print("LHS: " + str(flrs[kk])) if flrg.strLHS() in flrgs: flrgs[flrg.strLHS()].appendRHS(flrs[k-1].RHS) else: flrgs[flrg.strLHS()] = flrg flrgs[flrg.strLHS()].appendRHS(flrs[k-1].RHS) if self.dump: print("RHS: " + str(flrs[k-1])) self.global_frequency_count += 1 return (flrgs) def update_model(self,data): fzzy = FuzzySet.fuzzySeries(data, self.sets) flrg = ProbabilisticWeightedFLRG(self.order) for k in np.arange(0, self.order): flrg.appendLHS(fzzy[k]) if flrg.strLHS() in self.flrgs: self.flrgs[flrg.strLHS()].appendRHS(fzzy[self.order]) else: self.flrgs[flrg.strLHS()] = flrg self.flrgs[flrg.strLHS()].appendRHS(fzzy[self.order]) self.global_frequency_count += 1 def add_new_PWFLGR(self, flrg): if flrg.strLHS() not in self.flrgs: tmp = ProbabilisticWeightedFLRG(self.order) for fs in flrg.LHS: tmp.appendLHS(fs) tmp.appendRHS(flrg.LHS[-1]) self.flrgs[tmp.strLHS()] = tmp; self.global_frequency_count += 1 def get_probability(self, flrg): if flrg.strLHS() in self.flrgs: return self.flrgs[flrg.strLHS()].frequency_count / self.global_frequency_count else: self.add_new_PWFLGR(flrg) return self.get_probability(flrg) def getMidpoints(self, flrg): if flrg.strLHS() in self.flrgs: tmp = self.flrgs[flrg.strLHS()] ret = sum(np.array([tmp.get_probability(s) * self.setsDict[s].centroid for s in tmp.RHS])) else: pi = 1 / len(flrg.LHS) ret = sum(np.array([pi * s.centroid for s in flrg.LHS])) return ret def getUpper(self, flrg): if flrg.strLHS() in self.flrgs: tmp = self.flrgs[flrg.strLHS()] ret = sum(np.array([tmp.get_probability(s) * self.setsDict[s].upper for s in tmp.RHS])) else: pi = 1 / len(flrg.LHS) ret = sum(np.array([pi * s.upper for s in flrg.LHS])) return ret def getLower(self, flrg): if flrg.strLHS() in self.flrgs: tmp = self.flrgs[flrg.strLHS()] ret = sum(np.array([tmp.get_probability(s) * self.setsDict[s].lower for s in tmp.RHS])) else: pi = 1 / len(flrg.LHS) ret = sum(np.array([pi * s.lower for s in flrg.LHS])) return ret def forecast(self, data, **kwargs): ndata = np.array(self.doTransformations(data)) l = len(ndata) ret = [] for k in np.arange(self.order - 1, l): # print(k) affected_flrgs = [] affected_rhs = [] affected_flrgs_memberships = [] norms = [] mp = [] # Find the sets which membership > 0 for each lag count = 0 lags = {} if self.order > 1: subset = ndata[k - (self.order - 1): k + 1] for instance in subset: mb = FuzzySet.fuzzyInstance(instance, self.sets) tmp = np.argwhere(mb) idx = np.ravel(tmp) # flatten the array if idx.size == 0: # the element is out of the bounds of the Universe of Discourse if instance <= self.sets[0].lower: idx = [0] elif instance >= self.sets[-1].upper: idx = [len(self.sets) - 1] else: raise Exception(instance) lags[count] = idx count = count + 1 # Build the tree with all possible paths root = tree.FLRGTreeNode(None) self.buildTree(root, lags, 0) # Trace the possible paths and build the PFLRG's for p in root.paths(): path = list(reversed(list(filter(None.__ne__, p)))) flrg = hofts.HighOrderFLRG(self.order) for kk in path: flrg.appendLHS(self.sets[kk]) assert len(flrg.LHS) == subset.size, str(subset) + " -> " + str([s.name for s in flrg.LHS]) ## affected_flrgs.append(flrg) # Find the general membership of FLRG affected_flrgs_memberships.append(min(self.getSequenceMembership(subset, flrg.LHS))) else: mv = FuzzySet.fuzzyInstance(ndata[k], self.sets) # get all membership values tmp = np.argwhere(mv) # get the indices of values > 0 idx = np.ravel(tmp) # flatten the array if idx.size == 0: # the element is out of the bounds of the Universe of Discourse if ndata[k] <= self.sets[0].lower: idx = [0] elif ndata[k] >= self.sets[-1].upper: idx = [len(self.sets) - 1] else: raise Exception(ndata[k]) for kk in idx: flrg = hofts.HighOrderFLRG(self.order) flrg.appendLHS(self.sets[kk]) affected_flrgs.append(flrg) affected_flrgs_memberships.append(mv[kk]) count = 0 for flrg in affected_flrgs: # achar o os bounds de cada FLRG, ponderados pela probabilidade e pertinência norm = self.get_probability(flrg) * affected_flrgs_memberships[count] if norm == 0: norm = self.get_probability(flrg) # * 0.001 mp.append(norm * self.getMidpoints(flrg)) norms.append(norm) count = count + 1 # gerar o intervalo norm = sum(norms) if norm == 0: ret.append(0) else: ret.append(sum(mp) / norm) if self.auto_update and k > self.order+1: self.update_model(ndata[k - self.order - 1 : k]) ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]]) return ret def forecastInterval(self, data, **kwargs): ndata = np.array(self.doTransformations(data)) l = len(ndata) ret = [] for k in np.arange(self.order - 1, l): # print(k) affected_flrgs = [] affected_flrgs_memberships = [] norms = [] up = [] lo = [] # Find the sets which membership > 0 for each lag count = 0 lags = {} if self.order > 1: subset = ndata[k - (self.order - 1): k + 1] for instance in subset: mb = FuzzySet.fuzzyInstance(instance, self.sets) tmp = np.argwhere(mb) idx = np.ravel(tmp) # flatten the array if idx.size == 0: # the element is out of the bounds of the Universe of Discourse if math.isclose(instance, self.sets[0].lower) or instance < self.sets[0].lower: idx = [0] elif math.isclose(instance, self.sets[-1].upper) or instance > self.sets[-1].upper: idx = [len(self.sets) - 1] else: raise Exception("Data exceed the known bounds [%s, %s] of universe of discourse: %s" % (self.sets[0].lower, self.sets[-1].upper, instance)) lags[count] = idx count += 1 # Build the tree with all possible paths root = tree.FLRGTreeNode(None) self.buildTree(root, lags, 0) # Trace the possible paths and build the PFLRG's for p in root.paths(): path = list(reversed(list(filter(None.__ne__, p)))) flrg = hofts.HighOrderFLRG(self.order) for kk in path: flrg.appendLHS(self.sets[kk]) assert len(flrg.LHS) == subset.size, str(subset) + " -> " + str([s.name for s in flrg.LHS]) ## affected_flrgs.append(flrg) # Find the general membership of FLRG affected_flrgs_memberships.append(min(self.getSequenceMembership(subset, flrg.LHS))) else: mv = FuzzySet.fuzzyInstance(ndata[k], self.sets) # get all membership values tmp = np.argwhere(mv) # get the indices of values > 0 idx = np.ravel(tmp) # flatten the array if idx.size == 0: # the element is out of the bounds of the Universe of Discourse if math.isclose(ndata[k], self.sets[0].lower) or ndata[k] < self.sets[0].lower: idx = [0] elif math.isclose(ndata[k], self.sets[-1].upper) or ndata[k] > self.sets[-1].upper: idx = [len(self.sets) - 1] else: raise Exception("Data exceed the known bounds [%s, %s] of universe of discourse: %s" % (self.sets[0].lower, self.sets[-1].upper, ndata[k])) for kk in idx: flrg = hofts.HighOrderFLRG(self.order) flrg.appendLHS(self.sets[kk]) affected_flrgs.append(flrg) affected_flrgs_memberships.append(mv[kk]) count = 0 for flrg in affected_flrgs: # achar o os bounds de cada FLRG, ponderados pela probabilidade e pertinência norm = self.get_probability(flrg) * affected_flrgs_memberships[count] if norm == 0: norm = self.get_probability(flrg) # * 0.001 up.append(norm * self.getUpper(flrg)) lo.append(norm * self.getLower(flrg)) norms.append(norm) count = count + 1 # gerar o intervalo norm = sum(norms) if norm == 0: ret.append([0, 0]) else: lo_ = sum(lo) / norm up_ = sum(up) / norm ret.append([lo_, up_]) ret = self.doInverseTransformations(ret, params=[data[self.order - 1:]], interval=True) return ret def forecastAhead(self, data, steps, **kwargs): ret = [data[k] for k in np.arange(len(data) - self.order, len(data))] for k in np.arange(self.order - 1, steps): if ret[-1] <= self.sets[0].lower or ret[-1] >= self.sets[-1].upper: ret.append(ret[-1]) else: mp = self.forecast([ret[x] for x in np.arange(k - self.order, k)]) ret.append(mp) return ret def forecastAheadInterval(self, data, steps, **kwargs): l = len(data) ret = [[data[k], data[k]] for k in np.arange(l - self.order, l)] for k in np.arange(self.order, steps+self.order): if (len(self.transformations) > 0 and ret[-1][0] <= self.sets[0].lower and ret[-1][1] >= self.sets[ -1].upper) or (len(self.transformations) == 0 and ret[-1][0] <= self.original_min and ret[-1][ 1] >= self.original_max): ret.append(ret[-1]) else: lower = self.forecastInterval([ret[x][0] for x in np.arange(k - self.order, k)]) upper = self.forecastInterval([ret[x][1] for x in np.arange(k - self.order, k)]) ret.append([np.min(lower), np.max(upper)]) return ret def getGridClean(self, resolution): grid = {} if len(self.transformations) == 0: _min = self.sets[0].lower _max = self.sets[-1].upper else: _min = self.original_min _max = self.original_max for sbin in np.arange(_min,_max, resolution): grid[sbin] = 0 return grid def gridCount(self, grid, resolution, index, interval): #print(interval) for k in index.inside(interval[0],interval[1]): #print(k) grid[k] += 1 return grid def gridCountPoint(self, grid, resolution, index, point): k = index.find_ge(point) # print(k) grid[k] += 1 return grid def forecastAheadDistribution(self, data, steps, **kwargs): ret = [] resolution = kwargs.get('resolution',100) method = kwargs.get('method',2) intervals = self.forecastAheadInterval(data, steps) grid = self.getGridClean(resolution) index = SortedCollection.SortedCollection(iterable=grid.keys()) if method == 1: grids = [] for k in np.arange(0, steps): grids.append(self.getGridClean(resolution)) for k in np.arange(self.order, steps + self.order): lags = {} cc = 0 for i in intervals[k - self.order : k]: quantiles = [] for qt in np.arange(0, 50, 2): quantiles.append(i[0] + qt * ((i[1] - i[0]) / 100)) quantiles.append(i[1] - qt * ((i[1] - i[0]) / 100)) quantiles.append(i[0] + ((i[1] - i[0]) / 2)) quantiles = list(set(quantiles)) quantiles.sort() lags[cc] = quantiles cc += 1 # Build the tree with all possible paths root = tree.FLRGTreeNode(None) self.buildTreeWithoutOrder(root, lags, 0) # Trace the possible paths for p in root.paths(): path = list(reversed(list(filter(None.__ne__, p)))) qtle = self.forecastInterval(path) grids[k - self.order] = self.gridCount(grids[k - self.order], resolution, index, np.ravel(qtle)) for k in np.arange(0, steps): tmp = np.array([grids[k][q] for q in sorted(grids[k])]) ret.append(tmp / sum(tmp)) elif method == 2: ret = [] for k in np.arange(self.order, steps + self.order): grid = self.getGridClean(resolution) grid = self.gridCount(grid, resolution, index, intervals[k]) for qt in np.arange(0, 50, 1): # print(qt) qtle_lower = self.forecastInterval( [intervals[x][0] + qt * ((intervals[x][1] - intervals[x][0]) / 100) for x in np.arange(k - self.order, k)]) grid = self.gridCount(grid, resolution, index, np.ravel(qtle_lower)) qtle_upper = self.forecastInterval( [intervals[x][1] - qt * ((intervals[x][1] - intervals[x][0]) / 100) for x in np.arange(k - self.order, k)]) grid = self.gridCount(grid, resolution, index, np.ravel(qtle_upper)) qtle_mid = self.forecastInterval( [intervals[x][0] + (intervals[x][1] - intervals[x][0]) / 2 for x in np.arange(k - self.order, k)]) grid = self.gridCount(grid, resolution, index, np.ravel(qtle_mid)) tmp = np.array([grid[k] for k in sorted(grid)]) ret.append(tmp / sum(tmp)) else: ret = [] for k in np.arange(self.order, steps + self.order): grid = self.getGridClean(resolution) grid = self.gridCount(grid, resolution, index, intervals[k]) tmp = np.array([grid[k] for k in sorted(grid)]) ret.append(tmp / sum(tmp)) grid = self.getGridClean(resolution) df = pd.DataFrame(ret, columns=sorted(grid)) return df def __str__(self): tmp = self.name + ":\n" for r in sorted(self.flrgs): p = round(self.flrgs[r].frequencyCount / self.global_frequency_count, 3) tmp = tmp + "(" + str(p) + ") " + str(self.flrgs[r]) + "\n" return tmp