pyFTS.models.seasonal package¶
Submodules¶
pyFTS.models.seasonal.SeasonalIndexer module¶
-
class
pyFTS.models.seasonal.SeasonalIndexer.
DataFrameSeasonalIndexer
(index_fields, index_seasons, data_field, **kwargs)¶ Bases:
pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer
Use the Pandas.DataFrame index position to index the seasonality
-
get_data
(data)¶
-
get_data_by_season
(data, indexes)¶
-
get_index_by_season
(indexes)¶
-
get_season_by_index
(index)¶
-
get_season_of_data
(data)¶
-
set_data
(data, value)¶
-
-
class
pyFTS.models.seasonal.SeasonalIndexer.
DateTimeSeasonalIndexer
(date_field, index_fields, index_seasons, data_field, **kwargs)¶ Bases:
pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer
Use a Pandas.DataFrame date field to index the seasonality
-
get_data
(data)¶
-
get_data_by_season
(data, indexes)¶
-
get_index
(data)¶
-
get_index_by_season
(indexes)¶
-
get_season_by_index
(index)¶
-
get_season_of_data
(data)¶
-
set_data
(data, value)¶
-
-
class
pyFTS.models.seasonal.SeasonalIndexer.
LinearSeasonalIndexer
(seasons, units, ignore=None, **kwargs)¶ Bases:
pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer
Use the data array/list position to index the seasonality
-
get_data
(data)¶
-
get_index_by_season
(indexes)¶
-
get_season_by_index
(index)¶
-
get_season_of_data
(data)¶
-
-
class
pyFTS.models.seasonal.SeasonalIndexer.
SeasonalIndexer
(num_seasons, **kwargs)¶ Bases:
object
Seasonal Indexer. Responsible to find the seasonal index of a data point inside its data set
-
get_data
(data)¶
-
get_data_by_season
(data, indexes)¶
-
get_index
(data)¶
-
get_index_by_season
(indexes)¶
-
get_season_by_index
(inde)¶
-
get_season_of_data
(data)¶
-
pyFTS.models.seasonal.cmsfts module¶
-
class
pyFTS.models.seasonal.cmsfts.
ContextualMultiSeasonalFTS
(**kwargs)¶ Bases:
pyFTS.models.seasonal.sfts.SeasonalFTS
Contextual Multi-Seasonal Fuzzy Time Series
-
forecast
(data, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
forecast_ahead
(data, steps, **kwargs)¶ Point forecast n steps ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- steps – the number of steps ahead to forecast (default: 1)
- start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
Returns: a list with the forecasted values
-
generate_flrg
(flrs)¶
-
get_midpoints
(flrg, data)¶
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
-
class
pyFTS.models.seasonal.cmsfts.
ContextualSeasonalFLRG
(seasonality)¶ Bases:
pyFTS.models.seasonal.sfts.SeasonalFLRG
Contextual Seasonal Fuzzy Logical Relationship Group
-
append_rhs
(flr, **kwargs)¶
-
pyFTS.models.seasonal.common module¶
-
class
pyFTS.models.seasonal.common.
DateTime
¶ Bases:
enum.Enum
Data and Time granularity for time granularity and seasonality identification
-
day_of_month
= 30¶
-
day_of_week
= 7¶
-
day_of_year
= 364¶
-
half
= 2¶
-
hour
= 24¶
-
hour_of_month
= 744¶
-
hour_of_week
= 168¶
-
hour_of_year
= 8736¶
-
minute
= 60¶
-
minute_of_day
= 1440¶
-
minute_of_month
= 44640¶
-
minute_of_week
= 10080¶
-
minute_of_year
= 524160¶
-
month
= 12¶
-
quarter
= 4¶
-
second_of_day
= 86400¶
-
second_of_hour
= 3600¶
-
second_of_minute
= 60.00001¶
-
sixth
= 6¶
-
third
= 3¶
-
year
= 1¶
-
-
class
pyFTS.models.seasonal.common.
FuzzySet
(datepart, name, mf, parameters, centroid, alpha=1.0, **kwargs)¶ Bases:
pyFTS.common.FuzzySet.FuzzySet
Temporal/Seasonal Fuzzy Set
-
transform
(x)¶ Preprocess the data point for non native types
Parameters: x – Returns: return a native type value for the structured type
-
-
pyFTS.models.seasonal.common.
strip_datepart
(date, date_part, mask='')¶
pyFTS.models.seasonal.msfts module¶
-
class
pyFTS.models.seasonal.msfts.
MultiSeasonalFTS
(name, indexer, **kwargs)¶ Bases:
pyFTS.models.seasonal.sfts.SeasonalFTS
Multi-Seasonal Fuzzy Time Series
-
forecast
(data, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
forecast_ahead
(data, steps, **kwargs)¶ Point forecast n steps ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- steps – the number of steps ahead to forecast (default: 1)
- start_at – in the multi step forecasting, the index of the data where to start forecasting (default: 0)
Returns: a list with the forecasted values
-
generate_flrg
(flrs)¶
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-
pyFTS.models.seasonal.partitioner module¶
-
class
pyFTS.models.seasonal.partitioner.
TimeGridPartitioner
(**kwargs)¶ Bases:
pyFTS.partitioners.partitioner.Partitioner
Even Length DateTime Grid Partitioner
-
build
(data)¶ Perform the partitioning of the Universe of Discourse
Parameters: data – training data Returns:
-
build_index
()¶
-
plot
(ax)¶ Plot the :param ax: :return:
-
search
(data, **kwargs)¶ Perform a search for the nearest fuzzy sets of the point ‘data’. This function were designed to work with several overlapped fuzzy sets.
Parameters: - data – the value to search for the nearest fuzzy sets
- type – the return type: ‘index’ for the fuzzy set indexes or ‘name’ for fuzzy set names.
- results – the number of nearest fuzzy sets to return
Returns: a list with the nearest fuzzy sets
-
pyFTS.models.seasonal.sfts module¶
Simple First Order Seasonal Fuzzy Time Series implementation of Song (1999) based of Conventional FTS by Chen (1996)
- Song, “Seasonal forecasting in fuzzy time series,” Fuzzy sets Syst., vol. 107, pp. 235–236, 1999.
S.-M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets Syst., vol. 81, no. 3, pp. 311–319, 1996.
-
class
pyFTS.models.seasonal.sfts.
SeasonalFLRG
(seasonality)¶ Bases:
pyFTS.common.flrg.FLRG
First Order Seasonal Fuzzy Logical Relationship Group
-
append_rhs
(c, **kwargs)¶
-
get_key
()¶ Returns a unique identifier for this FLRG
-
-
class
pyFTS.models.seasonal.sfts.
SeasonalFTS
(**kwargs)¶ Bases:
pyFTS.common.fts.FTS
First Order Seasonal Fuzzy Time Series
-
forecast
(data, **kwargs)¶ Point forecast one step ahead
Parameters: - data – time series data with the minimal length equal to the max_lag of the model
- kwargs – model specific parameters
Returns: a list with the forecasted values
-
generate_flrg
(flrs)¶
-
get_midpoints
(flrg)¶
-
train
(data, **kwargs)¶ Method specific parameter fitting
Parameters: - data – training time series data
- kwargs – Method specific parameters
-