pyFTS.models.seasonal package¶
Submodules¶
pyFTS.models.seasonal.SeasonalIndexer module¶
-
class
pyFTS.models.seasonal.SeasonalIndexer.
DataFrameSeasonalIndexer
(index_fields, index_seasons, data_field, **kwargs)[source]¶ Bases:
pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer
Use the Pandas.DataFrame index position to index the seasonality
-
class
pyFTS.models.seasonal.SeasonalIndexer.
DateTimeSeasonalIndexer
(date_field, index_fields, index_seasons, data_field, **kwargs)[source]¶ Bases:
pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer
Use a Pandas.DataFrame date field to index the seasonality
-
class
pyFTS.models.seasonal.SeasonalIndexer.
LinearSeasonalIndexer
(seasons, units, ignore=None, **kwargs)[source]¶ Bases:
pyFTS.models.seasonal.SeasonalIndexer.SeasonalIndexer
Use the data array/list position to index the seasonality
pyFTS.models.seasonal.cmsfts module¶
pyFTS.models.seasonal.common module¶
-
class
pyFTS.models.seasonal.common.
DateTime
(value)[source]¶ Bases:
enum.Enum
Data and Time granularity for time granularity and seasonality identification
-
day_of_month
= 30¶
-
day_of_week
= 7¶
-
day_of_year
= 364¶
-
half
= 2¶
-
hour
= 24¶
-
hour_of_day
= 24¶
-
hour_of_month
= 744¶
-
hour_of_week
= 168¶
-
hour_of_year
= 8736¶
-
minute
= 60¶
-
minute_of_day
= 1440¶
-
minute_of_hour
= 60¶
-
minute_of_month
= 44640¶
-
minute_of_week
= 10080¶
-
minute_of_year
= 524160¶
-
month
= 12¶
-
quarter
= 4¶
-
second
= 60¶
-
second_of_day
= 86400¶
-
second_of_hour
= 3600¶
-
second_of_minute
= 60.00001¶
-
sixth
= 6¶
-
third
= 3¶
-
year
= 1¶
-
-
class
pyFTS.models.seasonal.common.
FuzzySet
(datepart, name, mf, parameters, centroid, alpha=1.0, **kwargs)[source]¶ Bases:
pyFTS.common.FuzzySet.FuzzySet
Temporal/Seasonal Fuzzy Set
pyFTS.models.seasonal.msfts module¶
pyFTS.models.seasonal.partitioner module¶
-
class
pyFTS.models.seasonal.partitioner.
TimeGridPartitioner
(**kwargs)[source]¶ Bases:
pyFTS.partitioners.partitioner.Partitioner
Even Length DateTime Grid Partitioner
-
build
(data)[source]¶ Perform the partitioning of the Universe of Discourse
- Parameters
data – training data
- Returns
-
mask
¶ A string with datetime formating mask
-
search
(data, **kwargs)[source]¶ Perform a search for the nearest fuzzy sets of the point ‘data’. This function were designed to work with several overlapped fuzzy sets.
- Parameters
data – the value to search for the nearest fuzzy sets
type – the return type: ‘index’ for the fuzzy set indexes or ‘name’ for fuzzy set names.
results – the number of nearest fuzzy sets to return
- Returns
a list with the nearest fuzzy sets
-
season
¶ Seasonality, a pyFTS.models.seasonal.common.DateTime object
-