import numpy as np import math import random as rnd import functools, operator from pyFTS.common import FuzzySet, Membership from pyFTS.partitioners import partitioner # C. H. Cheng, R. J. Chang, and C. A. Yeh, “Entropy-based and trapezoidal fuzzification-based fuzzy time series approach for forecasting IT project cost,” # Technol. Forecast. Social Change, vol. 73, no. 5, pp. 524–542, Jun. 2006. def splitBelow(data,threshold): return [k for k in data if k <= threshold] def splitAbove(data,threshold): return [k for k in data if k > threshold] def PMF(data, threshold): a = sum([1.0 for k in splitBelow(data,threshold)]) b = sum([1.0 for k in splitAbove(data, threshold)]) l = len(data) return [a / l, b / l] def entropy(data, threshold): pmf = PMF(data, threshold) if pmf[0] == 0 or pmf[1] == 0: return 1 else: return - sum([pmf[0] * math.log(pmf[0]), pmf[1] * math.log(pmf[1])]) def informationGain(data, thres1, thres2): return entropy(data, thres1) - entropy(data, thres2) def bestSplit(data, npart): if len(data) < 2: return None count = 1 ndata = list(set(data)) ndata.sort() l = len(ndata) threshold = 0 try: while count < l and informationGain(data, ndata[count - 1], ndata[count]) <= 0: threshold = ndata[count] count += 1 except IndexError: print(threshold) print (ndata) print (count) rem = npart % 2 if (npart - rem)/2 > 1: p1 = splitBelow(data,threshold) p2 = splitAbove(data,threshold) if len(p1) > len(p2): np1 = (npart - rem)/2 + rem np2 = (npart - rem)/2 else: np1 = (npart - rem) / 2 np2 = (npart - rem) / 2 + rem tmp = [threshold] for k in bestSplit(p1, np1 ): tmp.append(k) for k in bestSplit(p2, np2 ): tmp.append(k) return tmp else: return [threshold] class EntropyPartitioner(partitioner.Partitioner): def __init__(self, data, npart, func = Membership.trimf, transformation=None): super(EntropyPartitioner, self).__init__("Entropy", data, npart, func=func, transformation=transformation) def build(self, data): sets = [] partitions = bestSplit(data, self.partitions) partitions.append(self.min) partitions.append(self.max) partitions = list(set(partitions)) partitions.sort() for c in np.arange(1, len(partitions) - 1): sets.append(FuzzySet.FuzzySet(self.prefix + str(c), Membership.trimf, [partitions[c - 1], partitions[c], partitions[c + 1]],partitions[c])) return sets