# -*- coding: utf8 -*- import numpy as np import pandas as pd # Autocorrelation function estimative def acf(data, k): mu = np.mean(data) sigma = np.var(data) n = len(data) s = 0 for t in np.arange(0,n-k): s += (data[t]-mu) * (data[t+k] - mu) return 1/((n-k)*sigma)*s # Erro quadrático médio def rmse(targets, forecasts): return np.sqrt(np.nanmean((targets - forecasts) ** 2)) def rmse_interval(targets, forecasts): fmean = [np.mean(i) for i in forecasts] return np.sqrt(np.nanmean((fmean - targets) ** 2)) # Erro Percentual médio def mape(targets, forecasts): return np.mean(np.abs(targets - forecasts) / targets) * 100 def smape(targets, forecasts, type=2): return mape(targets, forecasts) if type == 1: return np.mean(np.abs(forecasts - targets) / ((forecasts + targets)/2)) elif type == 2: return np.mean(np.abs(forecasts - targets) / (abs(forecasts) + abs(targets)) )*100 else: return sum(np.abs(forecasts - targets)) / sum(forecasts + targets) def mape_interval(targets, forecasts): fmean = [np.mean(i) for i in forecasts] return np.mean(abs(fmean - targets) / fmean) * 100 # Theil's U Statistic def UStatistic(targets, forecasts): l = len(targets) naive = [] y = [] for k in np.arange(0,l-1): #y.append((forecasts[k ] - targets[k ]) ** 2) y.append(((forecasts[k + 1] - targets[k + 1]) / targets[k]) ** 2) #naive.append((targets[k + 1] - targets[k]) ** 2) naive.append(((targets[k + 1] - targets[k]) / targets[k]) ** 2) return np.sqrt(sum(y) / sum(naive)) # Theil’s Inequality Coefficient def TheilsInequality(targets, forecasts): res = targets - forecasts t = len(res) us = np.sqrt(sum([u**2 for u in res])) ys = np.sqrt(sum([y**2 for y in targets])) fs = np.sqrt(sum([f**2 for f in forecasts])) return us / (ys + fs) # Q Statistic for Box-Pierce test def BoxPierceStatistic(data, h): n = len(data) s = 0 for k in np.arange(1,h+1): r = acf(data, k) s += r**2 return n*s # Q Statistic for Ljung–Box test def BoxLjungStatistic(data, h): n = len(data) s = 0 for k in np.arange(1,h+1): r = acf(data, k) s += r**2 / (n -k) return n*(n-2)*s # Sharpness - Mean size of the intervals def sharpness(forecasts): tmp = [i[1] - i[0] for i in forecasts] return np.mean(tmp) # Resolution - Standard deviation of the intervals def resolution(forecasts): shp = sharpness(forecasts) tmp = [abs((i[1] - i[0]) - shp) for i in forecasts] return np.mean(tmp) # Percent of def coverage(targets, forecasts): preds = [] for i in np.arange(0, len(forecasts)): if targets[i] >= forecasts[i][0] and targets[i] <= forecasts[i][1]: preds.append(1) else: preds.append(0) return np.mean(preds)